Конспект урока "электромагнитное поле и электромагнитные волны". Электромагнитные волны план-конспект урока по физике (11 класс) на тему Физические поля и электромагнитные волны конспект

Конспект 32. Электромагнитные волны (ЭМВ).

3. Электромагнитные волны

Определение. Электромагнитное поле – форма материи, которая является системой переменного электрического и магнитного полей, взаимно порождающих друг друга.
Определение. Электромагнитная волна (ЭМВ) – электромагнитное поле, которое распространяется в пространстве с течением времени.
Примеры излучателей электромагнитных волн: колебательный контур (основной элемент радиопередатчика/приемника), солнце, лампочка, рентген-аппарат и др.
Замечание. Генрих Герц экспериментально подтвердил существование ЭМВ, используя для приема и передачи ЭМВ колебательные контуры, настроенные в резонанс (вибратор Герца).

Основные свойства ЭМВ:
1) Скорость распространения ЭМВ в вакууме – это скорость света ;
2) ЭМВ – это поперечная волна, векторы напряженности , магнитной индукции и скорости распространения взаимно перпендикулярны;

3) Если ЭМВ излучается колебательным контуром, то ее период и частота совпадают с частотой колебаний контура;
4) Как и для всех волн, длина ЭМВ рассчитывается по формуле .
Шкала электромагнитных волн :

Название диапазона Описание Использование в технике
Низкочастотное излучение Источники излучения, как правило, приборы переменного тока Нет областей массового применения
Радиоволны Излучаются различными радиопередатчиками: мобильные телефоны, радиолокаторы, теле- и радиостанции и т.п. Длинные радиоволны при распространении могут огибать земную поверхность, короткие отражаются от ионосферы Земли, ультракороткие проходят сквозь ионосферу Используются для передачи информации: телевидение, радио, интернет, мобильная связь и пр.
Инфракрасное излучение Источниками являются все тела, и интенсивность излучения тем выше, чем больше температура тела.
Практически во всем спектре является носителем теплового излучения
Приборы ночного видения, тепловизоры, инфракрасные обогреватели, низкоскоростные каналы связи
Видимый свет Излучаются осветительными приборами, звездами и пр.
Диапазон длин волн
λ∈(380 нм; 700 нм).
К восприятию этого излучения чувствительны глаза человека.
Различные частоты (длины волн) воспринимаются человеком как различные цвета – от красного до фиолетового
Фото- и видеозаписывающая техника, микроскопы, бинокли, телескопы и т.п.
Ультрафиолетовое излучение Основные источники: Солнце, ультрафиолетовые лампы.
Воздействует на кожу человека так, что в умеренных дозах способствует выработке пигмента меланина и потемнению кожи, а при большой интенсивности приводит к ожогам.
Способствует выработке в коже человека витамина группы D.
Обеззараживание воды и воздуха, аппараты проверки подлинности ценных бумаг, солярии
Рентгеновское излучение Основными источниками являются рентгеновские трубки, в которых происходит быстрое торможение заряженных частиц.
Рентгеновское излучение способно проникать сквозь вещество. Является вредоносным для живых организмов при излишнем облучении
Рентгенография, флюорография, досмотр вещей в аэропортах и т.п.
γ – излучение Как правило, является одним из продуктов ядерных реакций.
Это одно из самых высокоэнергетических и проникающих излучений. Является вредоносным и опасным для живых организмов
Дефектоскопия изделий, лучевая терапия, стерилизация, консервирование пищевых продуктов

Определение. Радиолокация – обнаружение и определение места нахождения различных объектов с помощью радиоволн. Она базируется, прежде всего, на свойствах отражения радиоволн.
Замечание. Для радиолокации используется прибор, который обычно называют радаром, его основные элементы – это передатчик и приемник.

– расстояние до объекта в радиолокации, м
Где t – время прохождения сигнала до цели и обратно, с
c – скорость света, м/с
Замечание. Принцип радиолокации аналогичен принципу эхолокации (см. конспект №30).
Ограничения в дальности обнаружения целей и в односторонней передаче сигнала:
1) Максимальная дальность обнаружения цели зависит от интервала времени между двумя последовательными импульсами радиолокатора ():
– максимальное расстояние радиолокации, м
2) Минимальная дальность обнаружения цели зависит от продолжительности импульса радиолокатора ():
– минимальное расстояние радиолокации, м
3) Дальность передачи сигнала ограничена формой Земли;
4) Дальность передачи сигнала ограничена мощностью радиопередатчика и чувствительностью принимающей антенны:
– минимальная мощность сигнала, который может принимать антенна (чувствительность), Вт
Где – мощность передатчика, Вт
S – площадь поверхности принимающей антенны, м²
R – расстояние от передатчика до антенны, м
Замечание. В 1-3 пунктах при определении дальности распространения сигнала не учитывается, что мощность передающей антенны и чувствительность принимающей ограничены.

Учитель физики МБОУ СОШ №42 г. Белгорода

Кокорина Александра Владимировна

Класс: 9

Предмет: Физика.

Дата проведения :

Тема: “Электромагнитное поле (ЭМП) ”.

Тип: комбинированный урок.

Цели урока:

образовательные:

— поверить ранее полученные знания;

— обеспечить восприятие, осмысление, первичное запоминание понятия «электромагнитное поле», взаимосвязи электрического и магнитного полей;

— организовать деятельность учащихся по воспроизведению изученной информации;

воспитательные:

— воспитание мотивов труда, добросовестного отношения к труду;

— воспитание мотивов учения, положительного отношения к знаниям;

— показ роли физического эксперимента и физической теории в изучении физических явлений.

развивающие:

— развитие умений творчески подходить к решению самых разнообразных задач;

— развитие умений действовать самостоятельно;

Средства обучения:

— доска и мел;

Методы обучения:

— объяснительно – иллюстративный.

Структура урока (этапы):

    организационный момент (2 мин);

    актуализация опорных знаний(10 мин);

    изучение нового материала (17 мин);

    проверка понимания полученной информации (8 мин);

    подведение итогов урока (2 мин);

    информация о домашнем задании (1 мин).

Ход урока

Деятельность учителя

Деятельность учащихся

— приветствие “Здравствуйте ребята”.

фиксация отсутствующих “Кто сегодня отсутствует?”

— здороваются с учителем “Здравствуйте”

— дежурный называет отсутствующих

— физический диктант

На столах у вас лежат чистые листы, подпишите их и укажите номер варианта, на котором вы сидите. Я буду диктовать вам вопросы по одному сначала для 1-го, потом для 2-го варианта. Будьте внимательны ”

Вопросы к диктанту:

1.1 Чем порождается магнитное поле?

1.2 Как наглядно можно показать магнитное поле?

2.1 Каков характер линий НМП?

2.2 Каков характер линий ОМП?

3.1 Магнитная индукция: формула, единицы измерения.

3.2 Линии магнитной индукции – это …

4.1 Что можно определить по правилу правой руки?

4.2 Что можно определить по правилу левой руки?

5.1 Явление ЭМИ – это …

5.2 Переменный ток – это …

Теперь передайте свои работы на первые парты. Кто не справился с заданием?” (разобрать вопросы, вызвавшие затруднения)

— подписывают работы

— отвечают на вопросы

Ответы:

1.1 движущимися зарядами

1.2 магнитными линиями

2.1 искривлены, их густота меняется

2.2 параллельны друг другу, расположены с одинаковой частотой

3.1 B = F / (I · l ), Тл

3.2 линии, касательные к которым в каждой точке поля совпадают с направлением вектора магнитной индукции

5.1 при изменении м.п., пронизывающего контур замкнутого проводника, в проводнике возникает ток

5.2 ток, периодически меняющийся во времени по модулю и направлению

— беседа с классом:

Тема нашего урока записана на доске. А кто мне скажет, в каком году и кем было открыто явление ЭМИ?”

В чём оно заключается?”

При каких условиях в проводнике протекает ток?”

Значит можно сделать вывод, что переменное м. п., пронизывающие замкнутый контур проводника, создаёт в нём э.п., под действием которого и возникает индукционный ток”.

— объяснение нового материала:

Опираясь на этот вывод, Джеймс Клерк Максвелл в 1865 создал сложную теорию ЭМП. Мы с вами рассмотрим только её основные положения. Записывайте”.

Основные положения теории:

3. Эти порождающие друг друга переменные э.п. и м.п. образуют ЭМП.

5. (на следующем уроке)

Вокруг зарядов, движущихся с постоянной скоростью создаётся постоянное м.п. Но если заряды движутся с ускорением, то возбуждаемое ими м.п. периодически меняется.

Переменное э.п. создаёт в пространстве переменное м.п., которое в свою очередь порождает переменное э.п. и т.д.”

Переменное э.п. – вихревое .

— отвечают устно на вопросы учителя

Майкл Фарадей, в 1831 году”

при изменении м.п., пронизывающего контур замкнутого проводника, в проводнике возникает ток”

если в нём есть э.п.”

— записывают в тетради, что диктует учитель

Теперь начертите в тетрадях таблицу как на доске. Заполним её вместе”

поле

парам.

сравнения

вихревое

электростатическое

характер

периодически изменяется со временем

не меняется со временем

источник

ускоренно движущиеся заряды

неподвижные заряды

силовые линии

замкнуты

начинаются на “+”; заканчиваются на “-”

— чертят таблицу и заполняют вместе с учителем

— обобщение и систематизация:

Итак, с каким важным понятием вы познакомились сегодня на уроке? Правильно, с понятием ЭМП. А что вы про него можете сказать?”.

— рефлексия: «у кого возникли трудности в понимании материала?»

Оценка поведения и успеваемости отдельных учащихся на уроке.

— отвечают на вопросы

— информация о домашнем задании

“§ 51 , подготовиться к контрольной работе. Урок окончен. До свидания”.

— записывают домашнее задание

— прощаются с учителем: “До свидания”.

У учеников в тетрадях должно быть:

Тема: “Электромагнитное поле (ЭМП) ”.

1856 год – Дж. Кл. Максвелл создал теорию ЭМП.

Основные положения теории:

1.Всякое изменение со временем м.п. приводит к возникновению переменного э.п.

2. Всякое изменение со временем э.п. приводит к возникновению переменного м.п.

3. Эти порождающие друг друга переменные э.п. и м.п. образуют ЭМП .

4. Источник ЭМП – ускоренно движущиеся заряды.

Переменное э.п. – вихревое .

сравнения

вихревое

электростатическое

характер

периодически изменяется со временем

не меняется со временем

источник

ускоренно движущиеся заряды

неподвижные заряды

силовые линии

замкнуты

начинаются на “+”; заканчиваются на “-”

ПЛАН-КОНСПЕКТ УРОКА

по теме « Электромагнитное поле и электромагнитные волны»

ФИО

Косинцева Зинаида Андреевна

Место работы

ДФ ГБПОУ «КТК»

Должность

преподаватель

Предмет

5.

Класс

2 курс профессия «Повар, кондитер», «Сварщик»

6.

7.

Тема

Номер урока в теме

Электромагнитное поле и электромагнитные волны. 27

8.

Базовый учебник

В.Ф. Дмитриева Физика: для профессий и специальностей технического профиля: для общеобразоват. учреждений: учебное пособие нач. и сред.проф.образования Учебник: -6-е изд. стер.-М.:Издательский центр «Академия», 2013.-448с.

Цели урока:

- обучающие

    повторить и обобщить знания студентов по разделу «Электродинамика»;

- развивающие

    способствовать развитию умения анализировать, выдвигать гипотезы, предположения, строить прогнозы, наблюдать и экспериментировать;

    развитие способности к самооценке и самоанализу собственной мыслительной деятельности и ее результатов;

    проверить уровень самостоятельности мышления учащихся по применению имеющихся знаний в различных ситуациях.

- воспитательные

    побуждение познавательного интереса к предмету и окружающим явлениям;

    воспитание духа соревнования, ответственности за товарищей, коллективизм.

Тип урока Урок - семинар

Формы работы студентов словесная передача информации и слуховое восприятие информации; наглядная передача информации и зрительное восприятие информации; передача информации с помощью практической деятельности; стимулирование и мотивация; методы контроля и самоконтроля.

Средства обучени я : Презентации; доклады; кроссворды; задания для тестированного опроса;

Оборудование: ПК, ИД, проектор, презентации ppt , видеоурок, ПК- рабочие места студентов, тесты.

Структура и ход урока

Таблица 1.

СТРУКТУРА И ХОД УРОКА

Этап урока

Название используемых ЭОР

(с указанием порядкового номера из Таблицы 2)

Деятельность учителя

(с указанием действий с ЭОР, например, демонстрация)

Деятельность ученика

Время

(в мин.)

Организационный момент

Приветствие обучающихся

Приветствуют преподавателя

Актуализация и коррекция опорных знаний

1. Огинский «Полонез»

Демонстрирует видеофрагмент.

Вступительное слово преподавателя

1,. Презентация, Слайд №1 Слайд №2

Объявление темы урока

Объявление целей и задач

Слушают и записывают

Повторение

    Устная работа с определениями и законами

    Тестовый опрос –Тест № 20

Распределяет по рабочим местам

Включает электронный журнал для тестов

Демонстрирует тест на экран

Работают за ПК и в тетрадях

Познание новых открытий

Выступления студентов

1. Гениальный самоучка Майкл Фарадей.

2. Основатель теории электромагнитного поля Джеймс Максвелл.

3. Великий экспериментатор Генрих Герц.

4. Александр Попов. История радио

5. Просмотр видефильма об А.С.Попове

1, Презентация, Слайд №4

2. Презентация

3. Презентация

4. Презентация

5. Презентация

Координирует выступление студентов, помогает и оценивает

Слушают выступление студентов, записывают, задают вопросы,

Характеризуют выступление

Рефлексия

6, Кроссворд

Организует работу на ПК

Решают кроссворд

Подведение итогов урока

1, Слайд №10

Выставляет оценки, подводит итог

Выставляют оценки

Домашнее задание

1,Слайд №5

Разъясняет домашнее задание - Презентация «»

Записывают задание

Приложение к плану-конспекту урока

по теме « Электромагнитное поле и электромагнитные волны »

Таблица 2.

ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ НА ДАННОМ УРОКЕ ЭОР

Название ресурса

Тип, вид ресурса

Форма предъявления информации (иллюстрация, презентация, видеофрагменты, тест, модель и т.д.)

Огинский «Полонез»

информационный

видеофрагмент

Конспект урока

информационный

презентация

Доклад «Гениальный самоучка Майкл Фарадей»

информационный

презентация

Доклад « Основатель теории электромагнитного поля Джеймс Максвелл »

информационный

презентация

Великий экспериментатор Генрих Герц»

информационный

презентация

«Александр Попов. История радио»

информационный

Презентация

Видеоурок Принцип радиотелефонной связи. Простейший радиоприемник.

Lkvideouroki .net . № 20.

Фильм «А.С.Попов»

информационный

Интернет-технология

www.youtube.com

Изобретение радио, Попов Александр Степанович,Попов.

Практический

Программа MyTest .

№20 Lkvideouroki .net .

Кроссворд

Практический

презентация

Муниципальное бюджетное общеобразовательное учреждение -

средняя общеобразовательная школа №6 им. Коновалова В.П.

г. Клинцы Брянской области

Разработал учитель физики первой квалификационной категории:

Свиридова Нина Григорьевна.

Цели и задачи:

Обучающие:

Ввести понятие электромагнитного поля и электромагнитной волны;

Продолжить формирование правильных представлений о физической картине мира;

Изучить процесс образования электромагнитной волны;

Изучить виды электромагнитных излучений их свойства, применение и действие на организм человека;

Познакомить с историей открытия электромагнитных волн

Формировать навыки решения качественных и количественных задач.

Развивающие:

Развитие аналитического и критического мышления (умения анализировать природные явления, результаты эксперимента, умение сравнивать и устанавливать общие и отличительные признаки, умение исследовать табличные данные, умение работать с информацией)

Развитие речи учащихся

Воспитательные

Воспитание познавательного интереса к физике, положительного отношения к знаниям, бережного отношения к здоровью.

Оборудование: презентация; таблица «Шкала электромагнитных волн», рабочий лист-конспект с заданиями для обучающей самостоятельной работы, физическое оборудование.

Демонстрационные эксперименты и физическое оборудование.

1) опыт Эрстеда (источник тока, магнитная стрелка, проводник, соединительные повода, ключ)

2) действие магнитного поля на проводник с током (источник тока, магнит дугообразный, проводник, соединительные повода, ключ)

3)явление электромагнитной индукции (катушка, магнит полосовой, гальванометр демонстрационный)

Меж предметные связи

Математика (решение расчетных задач);

История (немного об открытии и исследовании электромагнитного излучения);

ОБЖ (рациональное и безопасное использование приборов- источников электромагнитного излучения);

Биология (действие излучение на организм человека);

Астрономия (электромагнитное излучение космоса).

1. Мотивационный этап -7мин.

Пресс-конференция «Электричество и магнетизм»

Учитель: Современный мир, окружающий человека наполнен самой разнообразной техникой. Компьютеры и мобильные телефоны, телевизоры стали нашими ближайшими незаменимыми помощниками и даже заменяют нам общение с друзьями.. Многочисленные исследования показывают наши помощники в то же время отбирают у нас самое ценное — наше здоровье. Ваши родители часто задумываются, что наносит больше вреда микроволновая печь или сотовый телефон?

На этот вопрос ответим позже.

Сейчас - пресс конференцию по теме «Электричество и магнетизм».

Учащиеся. Журналист: Известные со времен античности электричество и магнетизм до начала 19 века считались явлениями, не связанными друг с другом, и изучались в разных разделах физики.

Журналист: Внешне электричество и магнетизм проявляют себя совершенно по-разному, но на самом деле они теснейшим образом связаны между собой, и многие ученые видели эту связь. Приведите пример аналогий, или общих свойств электрических и магнитных явлений.

Эксперт - физик.

Например, притягивание и отталкивание. В электростатике разноименных и одноименных зарядов. В магнетизме разноименных и одноименных полюсов.

Журналист:

Развитие физических теорий всегда происходило на основе преодоления противоречий между гипотезой, теорией и экспериментом.

Журналист: В начале XIX столетия французский ученый Франсуа Араго выпустил книгу «Гром и молния». В этой книге содержится несколько любопытнейших записей?

Вот некоторые выдержки из книги «Гром и молния»: «...В июне 1731 года один купец поместил в углу своей комнаты в Уэксфильде большой ящик, наполненный ножами, вилками и другими предметами, сделанными из железа и стали... Молния проникла в дом именно через угол, в котором стоял ящик, разбила его и разбросала все вещи, которые в нем находились. Все эти вилки и ножи.. оказались сильно намагниченными...»)

Какую гипотезу могли выдвинуть физики, проанализировав, выдержки из этой книги?

Эксперт - физик: Предметы были намагничены в результате удара молнии, в то время было известно молния это электрический ток, но объяснить, почему так происходит ученые теоретически в то время не могли.

Слайд №10

Журналист: Опыты с электрическим током привлекали ученых многих стран.

Эксперимент - критерий истинности гипотезы!

Какие опыты 19 века показывали связь электрических и магнитных явлений?

Эксперт - физик. Демонстрационный эксперимент - опыт Эрстеда.

В 1820 году Эрстед провел следующий опыт (опыт Эрстеда, магнитная стрелка поворачивается вблизи проводника с током) В пространстве вокруг проводника с током существует магнитное поле.

При отсутствии оборудования демонстрационный опыт можно заменить ЦОР

Журналист. Эрстед экспериментально доказал, что электрические и магнитные явления взаимосвязаны. Было ли теоретическое обоснование?

Эксперт - физик.

Французский физик Ампер в 1824 г. Ампер провел ряд опытов и изучил действие магнитного поля на проводники с током.

Демонстрационный эксперимент - действие магнитного поля на проводник с током.

Ампер впервые объединил два разобщенных ранее явления - электричество и магнетизм - одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы

Учитель: возникла проблема: Теория было встречена с недоверием многими учеными!?

Эксперт-физик. Демонстрационный эксперимент - явление электромагнитной индукции (катушка в состоянии покоя, магнит движется).

В 1831 г. английский физик М. Фарадей, открыл явление электромагнитной индукции и выяснили, что магнитное поле само способно порождать электрический ток.

Журналист. Проблема: Мы знаем, что ток может возникнуть при наличии электрического поля!

Эксперт - физик. Гипотеза: Электрическое поле возникает в результате изменения магнитного поля. Но доказательства этой гипотезы в то время не было.

Журналист: К середине 19 века накопилось достаточно много сведений об электрических и магнитных явлениях?

Эти сведения требовали систематизации и сведения в единую теорию, кто же создал эту теорию?

Эксперт-физик. Такая теория была создана выдающимся английским физиком Джеймсом Максвеллом. Теория Максвелла разрешила ряд принципиальных проблем электромагнитной теории. Ее основные положения были опубликованы в 1864 году в работе «Динамическая теория электромагнитного поля»

Учитель: Ребята, что мы будем изучать на уроке, сформулируйте тему урока.

Учащиеся формулируют тему урока.

Учитель: Запишите тему урока в рабочий лист-конспект, с которым мы будем работать сегодня в течение урока.

Рабочий лист-конспект урока ученика 9 класса……………………………………………………………

Тема урока:………………………………………………………………………………………………………………………………………….

1)Порождающие друг друга переменные электрические и магнитные поля образуют единое…………………………………………………………………………………………………………………………………………………

2) Источники электромагнитного поля-………………….……………………заряды,

движущиеся с …………………………………………………

3)Электромагнитная волна………………………………………………………………………………………………………………

…………………………………………………………………………………………………………………………………………………………….

………………………………………………………………………………………..................

4) Электромагнитные волны распространяются не только в веществе, но и в ……………………………..

5) Тип волны-…………………………………………

6)Скорость электромагнитных волн в вакууме обозначается латинской буквой с:

с ≈……………………………………………

Скорость электромагнитных волн в веществе ………………… .чем в вакууме…………

7) Длина волны λ=…………………………………………

Что бы вы хотели узнать на уроке, какие цели поставите перед собой.

Учащиеся формулируют цели урока.

Учитель: Сегодня на уроке мы узнаем, что такое электромагнитное поле, расширим знания об электрическом поле, познакомимся с процессом возникновения электромагнитной волны и некоторыми свойствами электромагнитных волн,

2.Актуализация опорных знаний-3мин.

Фронтальный опрос

1. Что такое магнитное поле?

2. Чем порождается магнитное поле?

3. Как обозначается вектор магнитной индукции? Назовите единицы измерения магнитной индукции.

4.Что такое электрическое поле. Где существует электрическое поле?

5. В чем заключается явление электромагнитной индукции?

6. Что такое волна? Назовите виды волн? Какая волна называется поперечной?

7. Запишите формулу для расчета длины волны?

3.Операционально-познавательный этап-25 мин

1)Введение понятия электромагнитного поля

Согласно теории Максвелла, переменные электрические и магнитные поля не могут существовать по отдельности: изменяющееся магнитное поле порождает электрическое поле переменное, а изменяющееся электрическое поле порождает переменное магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Работа с учебником - чтение определения стр. 180

Определение из учебника: Всякое изменение со временем магнитного поля приводит к возникновению переменного электрического поля, а всякое изменение со временем электрического поля порождает переменное магнитное поле.

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ

Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Работа с планом-конспектом (учащиеся дополняют конспект в процессе изучения нового материала).

1)Порождающие друг друга переменные электрические и магнитные поля образуют единое …………………(электромагнитное поле)

2) Источники электромагнитного поля -……(электрические) заряды, движущиеся с …………………(ускорением)

Источник электромагнитного поля. Учебник стр. 180

Источниками электромагнитного поля могут быть:

Электрический заряд, движущийся с ускорением, например колеблющийся (создаваемое ими электрическое поле периодически меняется)

(в отличие от заряда, движущегося с постоянной скоростью, например, в случае постоянного тока в проводнике, здесь создается постоянное магнитное поле).

Качественная задача.

Какое поле возникает вокруг электрона, если:

1)электрон покоится;

2) движется с постоянной скоростью;

3)движется с ускорением?

Электрическое поле существует всегда вокруг электрического заряда, в любой системе отсчета, магнитное - в той, относительно которой электрические заряды движутся,

Электромагнитное поле - в системе отсчета, относительно которой электрические заряды движутся с ускорением.

2) Объяснение механизм возникновения индукционного тока, е в случае, когда проводник находится в состоянии покоя. (Решение проблемы сформулированной на мотивационном этапе при проведении пресс-конференции)

1)Переменное магнитное поле порождает переменное электрическое поле (вихревое), под действием которого свободные заряды приходили в движение.

2)Электрическое поле существует независимо от проводника.

Проблема: отличается электрическое поле, созданное переменным магнитным полем от поля неподвижного заряда?

3)Ведение понятия напряженности, описание силовых линий электрического поля электростатического и вихревого, выделение отличий. (Решение проблемы сформулированной на мотивационном этапе при проведении пресс-конференции)

Введение понятия напряженности и силовых линий электростатического поля.

Что вы можете сказать о силовых линиях электростатического поля?

Чем отличается электростатическое поле от вихревого электрического поля?

Вихревое поле не связано с зарядом, силовые линии - замкнутые. Электростатическое- связано с зарядом, вихревое -порождается переменным магнитным полем и не связано с зарядом. Общее - электрическое поле.

4)Введение понятия электромагнитной волны. Отличительные свойства электромагнитных волн.

Согласно теории Максвелла переменное магнитное поле порождает переменное электрическое, это в свою очередь порождает поле магнитное, в результате электромагнитное поле распространяется в пространстве в виде волны.

Ведение 3-х определений, сначало2), затем учащиеся читают определение в учебнике стр. 182, записываем то определение в конспект, которое считаете более легким для запоминания или то, которое понравилось.

3)Электромагнитная волна…………….

1)представляет собой систему порождающих друг друга, и распространяющихся в пространстве, переменных (вихревых) электрического и магнитного полей.

2)это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды.

3)Возмущение электромагнитного поля, распространяющееся в пространстве, называется электромагнитной волной.

Свойства электромагнитных волн.

Чем электромагнитные волны отличаются от механических волн? См. в учебник стр. 181 и дописываем конспект п.4.

4) Электромагнитные волны распространяются не только в веществе, но и в ……(вакууме)

Если распространяется, механическая волна, то колебания передаются от частицы к частице.

Что совершает колебания в электромагнитной волне? Например, в вакууме?

Какие физические величины периодически меняются в ней?

С течением времени изменяется напряженность и магнитная индукция!

Как ориентированы векторы Е и В по отношению друг к другу в электромагнитной волне?

Волна электромагнитная продольная или поперечная?

5) тип волны………(поперечная)

Анимация «Электромагнитная волна»

Скорость электромагнитных волн в вакууме. Стр. 181 - найдите числовое значение скорости электромагнитных волн.

6) Скорость электромагнитных волн в вакууме обозначается латинской буквой с: с ≈ 300 000 км/с=3*108 м/с;

Что можно сказать о скорости волн электромагнитных в веществе?

Скорость электромагнитных волн в веществе ……(меньше) чем в вакууме.

За время, равное периоду колебаний, волна переместилась на расстояние вдоль оси, равное длине волны.

Для электромагнитных волн справедливы те же соотношения между длиной волны, скоростью, периодом и частотой, что и для механических волн. Скорость обозначается буквой с.

7) длина волны λ= c*T= с/ ν.

Повторим и проверим информацию об электромагнитных волнах. Учащиеся сравнивают записи в рабочих листах и на слайде.

Учитель: Любая теория в физике должны совпадать с экспериментом.

Сообщение уч-ся. Экспериментальное открытие электромагнитных волн.

В 1888г немецкий физик Генрих Герц экспериментально получил и зарегистрировал электромагнитные волны.

В результате опытов Герцем были обнаружены все свойства электромагнитных волн, теоретически предсказанные Максвеллом!

5)Исследование шкалы электромагнитного излучения.

Электромагнитные волны разделены по длинам волн (и, соответственно по частотам) на шесть диапазонов: границы диапазонов весьма условны.

Шкала электромагнитных волн

Низкочастотное излучение.

1.Радиоволны

2.Инфракрасное излучение (тепловое)

3.Видимое излучение (свет)

4.Ультрафиолетовое излучение

5.Рентгеновские лучи

6.γ - излучение

Учитель: Какую информацию можно получить, если исследовать шкалу электромагнитных волн.

Учащиеся: По рисункам можно определить, какие тела являются источниками волн или где применяются электромагнитные волны.

Вывод мы живем в мире электромагнитных волн.

Какие тела являются источниками волн.

Как изменяется длина волны и частота, если идти по шкале от радиоволн к гама -излучению?

Как вы думаете, почему на этой таблице в качестве примеров - космические объекты.

Учащиеся.Астрономические объекты (звезды и т.д.) излучают электромагнитные волны.

Исследование и сравнение информации на шкалах электромагнитных волн.

Сравните 2 шкалы на слайде? Чем они отличаются? Какого излучения нет на второй шкале?

Почему на второй нет низкочастотных колебаний?

Сообщение учащегося.

Максвелл: для создания интенсивной электромагнитной волны, которую можно было бы зарегистрировать прибором на некотором расстоянии от источника необходимо, чтобы колебания векторов напряженности и магнитной индукции происходили достаточно с высокой частотой (порядка 100000 колебаний в секунду и больше). Частота тока используемого в промышленности и быту - 50 Гц.

Приведите примеры тел, излучающих низкочастотные излучения.

Сообщение учащегося.

Влияние низкочастотных электромагнитных излучений на организм человека.

Электромагнитное излучение частотой 50 Гц, которое создается проводами сети переменного тока, при длительном воздействии вызывает

Усталость,

Головные боли,

Раздражительность,

Быструю утомляемость,

Ослабление памяти,

Нарушение сна…

Учитель: Обращаем внимание на то, что ухудшается память, если долго работать с компьютером, или смотреть телевизор, что мешает нам хорошо учиться. Сравним допустимые нормы электромагнитного излучения излучение бытовых приборов, электротранспорта и др. Какие электроприборы оказываются более вредными для здоровья человека? Что более опасно микроволновая печь или сотовый телефон? Зависит ли от мощности от мощности прибора?

Сообщение учащегося. Правила, которые помогут сохранить здоровье.

1)Расстояние между электроприборами должно быть не менее 1,5—2 м. (Чтобы не усиливать действие бытовых электромагнитных излучений)

На такое же расстояние следует удалять от телевизора или от компьютера ваши кровати.

2) находитесь от источников электромагнитных полей как можно дальше и как можно меньше времени.

3) Выключайте из розеток все неработающие приборы.

4) Включайте одновременно как можно меньше приборов.

Исследуем еще 2 шкала электромагнитных волн.

Какое излучение присутствует на второй шкале?

Учащиеся: На второй шкале, есть микроволновое излучение, а на первой нет.

Хотя диапазон частот условный, микроволновые волны относятся к радиоволнам или инфракрасному излучению, если рассматривать шкалу №1?

Учащиеся: Микроволновое излучение - радиоволны.

Где применяются микроволновые волны?

Сообщение учащегося.

Микроволновое излучение называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн.

Микроволновое излучение играет большую роль в жизни современного человека, ведь не можем отказаться от таких достижений науки мобильная связь, спутниковое телевидение, микроволновые печи или СВЧ-печи, радиолокация, принцип действия которых основан на применение микроволн.

Решение проблемного вопроса, поставленного в начале урока.

Что что общего между микроволновкой и сотовым телефоном?

Учащиеся. Принцип действия основан не применение радиоволн микроволнового диапазона.

Учитель: Интересную информацию об изобретения микроволновой печи можно найти в интернете - домашнее задание.

Учитель: Мы живем в "море" электромагнитных волн, которое излучает солнце(весь спектр электромагнитных волн) и другие космические объекты - звезды, галактики, квазары, мы должны помнить, что любое электромагнитное излучение может, приносит и пользу и вред. Исследование шкал электромагнитных волн показывает нам, насколько велика значимость электромагнитных волн в жизни человека.

6) Тренировочная самостоятельная работа - работа в парах с учебником стр.183-184 и с опорой на жизненный опыт. 5 тестовых вопросов обязательные для всех, 6 задание - расчетная задача.

1.Процесс фотосинтеза происходит под действием

Б) видимого излучения-света

2.Кожа человека загорает под действием

А) ультрафиолетового излучения

Б) видимого излучения-света

3.В медицине при флюорографическом обследовании применяются

А) ультрафиолетовое излучение

Б) рентгеновское излучение

4.Для осуществления телевизионной связи используют

А) радиоволны

Б) рентгеновское излучение

5.Чтобы не получить ожог сетчатки от солнечного излучения люди используют стеклянные «солнечные очки», так как стекло поглощает значительную часть

А) ультрафиолетового излучения

Б) видимого излучения-света

6. На какой частоте суда передают сигнал бедствия SOS, если по международному соглашению длина радиоволны должна быть 600м? Скорость распространения радиоволн в воздухе равна скорости электромагнитных волн в вакууме 3*108 м/с

4)Рефлексивно-оценочный этап. Итог урока.-4.5 мин

1) Проверка самостоятельной работы с самооценкой.Если выполнены все тестовые задания - оценка «4», если уч-ся успели сделать задачу -«5»

Дано: λ = 600 м, с = 3*108 м/с
Решение: ν = с/λ = 3*10^8 \ 600 = 0,005 * 10^8 = 0,5 * 10^6 Гц== 5 * 10^5 Гц

Ответ: 500 000 Гц = 500кГц = 0,5 МГц

2)Подведение итогов и оценка и самооценка учащихся.

Что такое электромагнитное поле?

Что такое электромагнитная волна?

Что вы теперь знаете про электромагнитные волны?

Какое значение имеет изученный материал в вашей жизни?

Что понравилось на уроке больше всего?

5.Домашнее задание-0.5 мин П. 52,53 упр. 43, упр. 44(1)

История изобретения микроволновки-интернет.

Класс: 11

Цели урока:

  • познакомить учащихся с особенностями распространения электромагнитных волн;
  • рассмотреть этапы создания теории электромагнитного поля и экспериментального подтверждения этой теории;

Воспитательная: ознакомить учащихся с интересными эпизодами биографии Г. Герца, М. Фарадея, Максвелла Д. К., Эрстеда Х.К., А.С. Попова;

Развивающая: способствовать развитию интереса к предмету.

Демонстрации: слайды, видеоролик.

ХОД УРОКА

Орг. Момент.

Приложение 1. (СЛАЙД № 1). Сегодня мы познакомимся с особенностями распространения электромагнитных волн, отметим этапы создания теории электромагнитного поля и экспериментального подтверждения этой теории, остановимся на некоторых биографических данных.

Повторение.

Для осуществления целей урока нам необходимо повторить некоторые вопросы:

Что такое волна, в частности механическая волна? (Распространение колебаний частиц вещества в пространстве)

Какие величины характеризуют волну? (длина волны, скорость волны, период колебаний и частота колебаний)

Какая математическая связь между длиной волны и периодом колебаний? (длина волны равна произведению скорости волны и периода колебаний)

(СЛАЙД № 2)

Изучение нового материала.

Электромагнитная волна во многом схожа с механической волной, но есть и различия. Основное отличие состоит в том, что для распространения этой волны не нужна среда. Электромагнитная волна - результат распространения переменного электрического поля и переменного магнитного полей в пространстве, т.е. электромагнитного поля.

Электромагнитное поле создается ускоренно движущимися заряженными частицами. Его наличие относительно. Это особый вид материи, является совокупностью переменных электрического и магнитного полей.

Электромагнитная волна - распространение электромагнитного поля в пространстве.

Рассмотрим график распространения электромагнитной волны.

(СЛАЙД № 3)

Схема распространения электромагнитной волны представлена на рисунке. Необходимо запомнить, что вектора напряженности электрического поля, магнитной индукции и скорости распространения волны взаимно перпендикулярны.

Этапы создания теории электромагнитной волны и ее практического подтверждения.

Ханс Кристиан Эрстед (1820 г.) (СЛАЙД № 4) датский физик, непременный секретарь Датского королевского общества (с 1815 года).

С 1806 года - профессор этого университета, с 1829 года одновременно директор Копенгагенской политехнической школы. Работы Эрстеда посвящены электричеству, акустике, молекулярной физике.

(СЛАЙД № 4). В 1820 году он обнаружил действие электрического тока на магнитную стрелку, что привело к возникновению новой области физики - электромагнетизма. Идея взаимосвязи между различными явлениями природы - характерна для научного творчества Эрстеда; в частности он один из первых высказал мысль, что свет представляет собой электромагнитные явления. В 1822-1823 годах независимо от Ж. Фурье переоткрыл термоэлектрический эффект и построил первый термоэлемент. Экспериментально изучал сжимаемость и упругость жидкостей и газов, изобрел пьезометр (1822). Проводил исследования по акустике, в частности пытался обнаружить возникновение электрических явлений за счет звука. Исследовал отклонения от закона Бойля-Мариотта.

Эрстед был блестящим лектором и популяризатором, организовал в 1824 году Общество по распространению естествознания, создал первую в Дании физическую лабораторию, способствовал улучшению преподавания физики в учебных заведениях страны.

Эрстед почетный член многих академий наук, в частности Петербургской АН (1830).

Майкл Фарадей (1831 г.)

(СЛАЙД № 5)

Гениальный ученый Майкл Фарадей был самоучкой. В школе получил только начальное образование, а затем в силу жизненных проблем работал и попутно изучал научно-популярную литературу по физике и химии. Позже Фарадей стал лаборантом у известного в то время химики, затем превзошел своего учителя и сделал много важного для развития таких наук, как физика и химия. В 1821 году Майкл Фарадей узнал об открытии Эрстеда, которое заключалось в том, что электрическое поле создает магнитное поле. После обдумывания этого явления, Фарадей задался целью получить из магнитного поля электрическое поле и в качестве постоянного напоминания он носил в кармане магнит. Через десять лет он претворил свой девиз в жизнь. Превратил магнетизм в электричество: ~ магнитное поле создает ~ электрический ток

(СЛАЙД № 6) Ученый-теоретик вывел уравнения, которые носят его имя. Эти уравнения говорили о том, что переменные магнитное и электрическое поля создают друг друга. Из этих уравнений следует, что переменное магнитное поле создает вихревое электрическое поле, а оно создает переменное магнитное поле. Кроме того, в его уравнениях была постоянная величина - это скорость света в вакууме. Т.е. из этой теории следовало, что электромагнитная волна распространяется в пространстве со скоростью света в вакууме. Поистине гениальная работа была оценена многими учеными того времени, а А. Эйнштейн говорил, что самым увлекательным во время его учения была теория Максвелла.

Генрих Герц (1887 г.)

(СЛАЙД № 7). Генрих Герц родился болезненным ребенком, но стал очень сообразительным учеником. Ему нравились все предметы, которые изучал. Будущий ученый любил писать стихи, работать на токарном станке. После окончания гимназии Герц поступил в высшее техническое училище, но не пожелал быть узким специалистом и поступил в Берлинский университет, чтобы стать ученым. После поступления в университет Генрих Герц стремиться заниматься в физической лаборатории, но для этого необходимо было заниматься решением конкурсных задач. И он взялся за решение следующей задачи: обладает ли электрический ток кинетической энергией? Эта работа была рассчитана на 9 месяцев, но будущий ученый решил ее через три месяца. Правда, отрицательный результат, с современной точки зрения неверен. Точность измерения необходимо было увеличить в тысячи раз, что тогда не представлялось возможным.

Еще будучи студентом, Герц защитил докторскую диссертацию на "отлично" и получил звание доктора. Ему было 22 года. Ученый успешно занялся теоретическими исследованиями. Изучая теорию Максвелла, он показал высокие экспериментальные навыки, создал прибор, который называется сегодня антенной и с помощью передающей и приемной антенн осуществил создание и прием электромагнитной волны и изучил все свойства этих волн. Он понял, что скорость распространения этих волн конечна и равна скорости распространения света в вакууме. После изучения свойств электромагнитных волн он доказал, что они аналогичны свойствам света. К сожалению, эта робота окончательно подорвала здоровье ученого. Сначала отказали глаза, затем заболели уши, зубы и нос. Вскоре он скончался.

Генрих Герц завершил огромный труд, начатый Фарадеем. Максвелл преобразовал представления Фарадея в математические формулы, а Герц превратил математические образы в видимые и слышимые электромагнитные волны. Слушая радио, просматривая телевизионные передачи, мы должны помнить об этом человеке. Не случайно единица частоты колебаний названа в честь Герца, и совсем не случайно первыми словами, переданными русским физиком А.С. Поповым с помощью беспроводной связи, были "Генрих Герц", зашифрованные азбукой Морзе.

Попов Александр Сергеевич (1895 г.)

Попов совершенствовал приемную и передающую антенну и вначале была осуществлена связь на расстоянии

(СЛАЙД № 8) 250 м, затем на 600 м. И в 1899 году ученый установил радиосвязь на расстоянии 20 км, а в 1901 - на 150 км. В 1900 году радиосвязь помогла провести спасательные работы в Финском заливе. В 1901 году итальянский инженер Г. Маркони осуществил радиосвязь через Атлантический океан. (Слайд № 9). Посмотрим видеофрагмент, где рассмотрены некоторые свойства электромагнитной волны. После просмотра ответим на вопросы.

Почему лампочка в приемной антенне изменяет свой накал при внесении металлического стержня?

Почему этого не происходит при замене металлического стержня на стеклянный?

Закрепление.

Ответьте на вопросы:

(СЛАЙД № 10)

Что такое электромагнитная волна?

Кто создал теорию электромагнитной волны?

Кто изучил свойства электромагнитных волн?

Заполните таблицу ответов в тетради, помечая номер вопроса.

(СЛАЙД № 11)

Как зависит длина волны от частоты колебания?

(Ответ: Обратно пропорционально)

Что произойдет с длиной волны, если период колебания частиц увеличится в 2 раза?

(Ответ: Увеличится в 2 раза)

Как изменится частота колебания излучения при переходе волны в более плотную среду?

(Ответ: Не изменится)

Что является причиной излучения электромагнитной волны?

(Ответ: Заряженные частицы, движущиеся с ускорением)

Где используются электромагнитные волны?

(Ответ: сотовый телефон, микроволновая печь, телевидение, радиовещание и т.д.)

(Ответы к вопросам)

Решим задачу.

Кемеровский телецентр передает две несущие волны: несущая волна изображения с частотой излучения 93,4 кГц и несущая волна звука с частотой 94,4 кГц. Определить длины волн, соответствующие данным частотам излучения.

(СЛАЙД № 12)

Домашнее задание.

(СЛАЙД № 13) Необходимо подготовить сообщения о различных видах электромагнитного излучения, перечислив их особенности и рассказать об их применении в жизни человека. Сообщение по длительности должно составлять пять минут.

  1. Виды электромагнитных волн:
  2. Волны звуковой частоты
  3. Радиоволны
  4. СВЧ излучение
  5. Инфракрасное излучение
  6. Видимый свет
  7. Ультрафиолетовое излучение
  8. Рентгеновское излучение
  9. Гамма излучение

Подведение итогов.

(СЛАЙД № 14) Спасибо за внимание и за работу!!!

Литература.

  1. Касьянов В.А. Физика 11 класс. - М.: Дрофа, 2007
  2. Рымкевич А.П. Сборник задач по физике. - М.: Провсещение, 2004.
  3. Марон А.Е., Марон Е.А.Физика 11 класс. Дидактические материалы. - М.: Дрофа, 2004.
  4. Томилин А.Н. Мир электричества. - М.: Дрофа, 2004.
  5. Энциклопедия для детей. Физика. - М.: Аванта+, 2002.
  6. Ю. А. Храмов Физики. Биографический справочник, - М., 1983.
Понравилось? Лайкни нас на Facebook