Какие орбитали и в каком количестве. Расчет числа атомных орбиталей на подуровнях

Атомные орбитали

В конце XIX в. французскими учеными физиками П.Кюри и М.Склодовской-Кюри было открыто явление естественной радиоактивности. В составе урановых руд ими были найдены два новых радиоактивных элемента - полоний и радий. Было показано. что радий претерпевает многоступенчатый распад, который заканчивается образованием стабильного свинца. Поскольку свинец сильно отличается от радия, такое превращение можно было объяснить только тем, что атомы того и другого элементов (и вообще всех остальных элементов) построены по схожим принципам из одинаковых, более мелких, чем сами атомы, частиц, количество которых, в свою очередь, определяет свойства тех или иных элементов. Это послужило основанием для углубленного детального изучения строения атома.

Планетарная модель атома и ее развитие

Первым основополагающим достижением в этой области было создание модели атома Э. Резерфордом (1911 г.) . По Резерфорду, практичски вся масса атома сосредоточена в его центральной части, которая была названа ядром . Ядро имеет положительный заряд, который компенсируется вращающимися вокруг ядра отрицательно заряженными электронами . Представленный таким образом атом напоминал планетную систему со светилом в центре, вследствие чего она получила название планетарной . Планетарная модель атома позволяла объяснить ряд экспериментально наблюдаемых явлений тем, что практически вся масса атома представлялась сосредоточенной в его ядре, размеры которого оказывались намного меньше размеров остальной части атома, занятой электронами. Однако характер движения электронов по замкнутым орбитам вокруг ядра противоречил физическим представлениям о поведении взаимодействующих электрических зарядов.

Во первых, по законам электродинамики, вращающийся вокруг ядра электрон должен, в результате потери энергии на излучение, упасть на ядро. Во-вторых, при сближении с ядром длины излучаемых электроном волн должны непрерывно изменяться, образуя сплошной спектр. Однако атомы не исчезают (т.е. электроны не падают на ядро), а спектры излучения атомов являются не сплошными, а линейчатыми.

Впоследствии датский физик-теоретик Н.Бор использовал представления Резерфорда и квантовую теорию М.Планка (1900 г.) для разработки в 1913 г. первой квантовой модели атома. Теория Бора основана на двух постулалах . Согласно первому постулату Бора, электроны в атоме вращаются не излучая энергии по строго определенным стационарным орбитам, удовлетворяющим теории квантов, т.е.таким, которым отвечают точно определенные (квантованные) значения энергии. Эти значения называются энергетическими уровнями. Число электронов, которые могут находиться на каждом уровне определяется формулой $2n^2$, где $n$ - номер уровня. Т.е. на первом уровне может быть только 2 электрона, на втором - $8$, на третьем - $18$, на четвертом - $32$. Максимальное заполнение электронами более высоких уровней в атомах известных элементов не достигается.

Второй постулат Бора заключается в том, что при переходе с одной орбиты на другую электрон излучает квант энергии. После того как Бор рассчитал радиусы орбит и энергии электронов, на них, он рассчитал также энергию фотонов и соответствующие им линии в спектре атома водорода, причем расчетные и экспериментальные данные соответствовали друг другу.

Теория Бора оказалась в определенном смысле плодотворной, т.к. позволила объяснить линейчатый характер атомных спектров и отчасти качественно механизм образования химической связи. В то же время она еще не давала возможности количественно рассчитать энергию химической связи даже в простейших молекулах.

В конце концов стало ясно, что законы механики, описывающие движение микрообъектов, таких как элементарные частицы, отличаются от законов классической механики.

Корпускулярно-волновые свойства микромира и уравнение Шредингера

Следующий этап в становлении квантовой теории строения атома начался с теоретического обоснования де Бройлем двойственной природы материальных тел, в частности - электрона .

Впервые двойственная природа установлена для света. Для него с одной стороны характерны явления интерференции и дифракции, что присуще волновым процессам, а с другой стороны -- явления фотоэффекта и светового давления, объяснимые только на основе представлений о свете как потоке частиц.

Распространив идеи Эйнштейна о корпускулярно-волновом дуализме (двойственности) природы света на вещество, де Бройль постулировал в 1924 г., что электрон наряду с корпускулярными, обладает и волновыми свойствами.

Кроме того, согласно представлениям квантовой теории одновременно и абсолютно точно определить импульс и координату микрочастицы невозможно . Погрешности их определения соотносятся между собой как

где $р$ - импульс, $х$ - координата, $h$ - постоянная Планка

Это положение является одним из постулатов квантовой механики и называется принципом неопределенности Гейзенберга . Принцип неопределенности не следует понимать просто как нашу неспособность точно измерить определенные величины. Он является реальным свойством движущихся объектов, траектории которых не представляют собой прямых или плавно искривленных линий, а имеют волновой характер и подчиняются законам волновой механики.

Применительно к электрону в атоме это означает, что невозможно точно указать пространственные координаты электрона в атоме в данный момент времени, а лишь о вероятности его нахождения в определенном объеме вблизи атомного ядра.

Исходя из учения о корпускулярно-волновом дуализме природы электрона, Шредингер и ряд других ученых разработали теорию движения микрочастиц - волновую механику, которая привела к созданию современной квантово-механической или орбитальной модели атома.

С точки зрения волновой механики, электрон является стоячей волной. Для нее характерно вынужденное движение, при котором максимумы и минимумы, чередуясь, располагаются в одной плоскости, но в противоположных направлениях. В т.н. узловых точках, на половине расстояния между максимумом и минимумом, функция равна нулю. При переходе через узел направление и знак волны меняется.

Функцию, о которой идет речь, принято называть волновой функцией . Шредингер вывел уравнение, которое связывает волновую функцию с энергией электрона или «ансамбля» электронов. Волновое уравнение Шредингера для движения частицы имеет вид:

где $h$ - постоянная Планка, $m$ - масса частицы, $U$ - ее потенциальная энергия, $Е$ - ее полная энергия, $\Psi $ - т.н. волновая функция. Последняя величина имеет физический смысл не сама по себе, а ее квадрат $\Psi^2$. Эта величина является плотностью вероятности распределения электрона в объеме вблизи атомного ядра.

Решая уравнение Шредингера для атома, можно найти выражение для $\Psi $, которое позволяет вычислить плотность вероятности нахождения электрона в той или иной точке пространства вокруг ядра, не рассматривая траекторию движения электрона. Эту функцию, называемую орбиталью , наглядно можно представить в виде «электронного облака» с центром симметрии в точке, соответствующей ядру атома. Отрицательный заряд электрона делокализован (распределен) в пространстве вблизи атомного ядра. При этом «плотность» электронного облака различна в разных точках пространства вблизи атомного ядра. Т.е. чем больше вероятность, связанная с величиной $\Psi^2$, тем «мутнее» облако.

Очевидно, вероятностный подход к описанию атома предполагает невозможным четко ограничить пространство, в котором может находиться электрон, т.е. не позволяет точно определить границы атома. При квантово-механическом моделировании этого пространства, допуская, что достаточно ограничить вероятность пребывания электрона объемом, который составляет $90 - 95\%$ от полного объема пространства вокруг ядра. Этот объем, величина и форма которого может быть различной, и принято считать атомной орбиталью .

Определение 1

Т.о., согласно представлению о вероятностном характере распределения координаты и заряда электрона в пространстве вблизи атомного ядра можно определить атомную орбиталь как геометрический образ, отвечающий объему пространства вокруг атомного ядра, который соответствует $90\%$-ной вероятности нахождения в этом объеме электрона (как частицы) и одновременно $90\%$-ной плотности заряда электрона (как волны).

Химический элемент – определенный вид атомов, обозначаемый названием и символом и характеризуемый порядковым номером и относительной атомной массой.

В табл. 1 перечислены распространенные химические элементы, приведены символы, которыми они обозначаются (в скобках – произношение), порядковые номера, относительные атомные массы, характерные степени окисления.

Нулевая степень окисления элемента в его простом веществе (веществах) в таблице не указана.




Все атомы одного элемента имеют одно и то же число протонов в ядре и число электронов в оболочке. Так, в атоме элемента водород Н находится 1р + в ядре и на периферии 1е - ; в атоме элемента кислород О находится 8р + в ядре и 8е - в оболочке; атом элемента алюминий Аl содержит 13р + в ядре и 13е - в оболочке.

Атомы одного элемента могут различаться числом нейтронов в ядре, такие атомы называются изотопами. Так, у элемента водород Н три изотопа: водород-1 (специальное название и символ протий 1 H) с 1 р + в ядре и 1е - в оболочке; водород-2 (дейтерий 2 Н, или D) с 1р + и 1п 0 в ядре и 1е - в оболочке; водород-3 (тритий 3 Н, или Т) с 1р + и 2п 0 в ядре и 1е - в оболочке. В символах 1 Н, 2 Н и 3 Н верхний индекс указывает массовое число – сумму чисел протонов и нейтронов в ядре. Другие примеры:




Электронную формулу атома любого химического элемента в соответствии с его расположением в Периодической системе элементов Д. И. Менделеева можно определить по табл. 2.




Электронная оболочка любого атома делится на энергетические уровни (1, 2, 3-й и т. д.), уровни делятся на подуровни (обозначаются буквами s, р, d, f ). Подуровни состоят из атомных орбиталей – областей пространства, где вероятно пребывание электронов. Орбитали обозначаются как 1s (орбиталь 1-го уровня s-подуровня), 2s , 2р , 3s , 3р, 3d, 4s … Число орбиталей в подуровнях:



Заполнение атомных орбиталей электронами происходит в соответствии с тремя условиями:

1) принцип минимума энергии

Электроны заполняют орбитали, начиная с подуровня с меньшей энергией.

Последовательность нарастания энергии подуровней:

1s < 2c < 2p < 3s < 3p < 4s ? 3d < 4p < 5s ? 4d < 5p < 6s

2) правило запрета (принцип Паули)

В каждой орбитали может разместиться не более двух электронов.

Один электрон на орбитали называется неспаренным, два электрона - электронной парой:




3) принцип максимальной мультиплетности (правило Хунда)

В пределах подуровня электроны сначала заполняют все орбитали наполовину, а затем – полностью.

Каждый электрон имеет свою собственную характеристику – спин (условно изображается стрелкой вверх или вниз). Спины электронов складываются как вектора, сумма спинов данного числа электронов на подуровне должна быть максимальной (мультиплетность):




Заполнение электронами уровней, подуровней и орбиталей атомов элементов от Н (Z = 1) до Kr (Z = 36) показано на энергетической диаграмме (номера отвечают последовательности заполнения и совпадают с порядковыми номерами элементов):



Из заполненных энергетических диаграмм выводятся электронные формулы атомов элементов. Число электронов на орбиталях данного подуровня указывается в верхнем индексе справа от буквы (например, 3d 5 – это 5 электронов на Зd -подуровне); вначале идут электроны 1-го уровня, затем 2-го, 3-го и т. д. Формулы могут быть полными и краткими, последние содержат в скобках символ соответствующего благородного газа, чем передается его формула, и, сверх того, начиная с Zn, заполненный внутренний d-подуровень. Примеры:

3 Li = 1s 2 2s 1 = [ 2 He]2s 1

8 O = 1s 2 2s 2 2p 4 = [ 2 He]2s 2 2p 4

13 Al = 1s 2 2s 2 2p 6 3s 2 3p 1 = [ 10 Ne]3s 2 3p 1

17 Cl = 1s 2 2s 2 2p 6 3s 2 3p 5 = [ 10 Ne]3s 2 3p 5

2O Са = 1s 2 2s 2 2p 6 3s 2 3p4s 2 = [ 18 Ar]4s 2

21 Sc = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2 = [ 18 Ar]3d 1 4s 2

25 Mn = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 = [ 18 Ar]3d 5 4s 2

26 Fe = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 = [ 18 Ar]3d 6 4s 2

3O Zn = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 = [ 18 Ar, 3d 10 ]4s 2

33 As = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 = [ 18 Ar, 3d 10 ]4s 2 4p 3

36 Kr = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 = [ 18 Ar, 3d 10 ]4s 2 4p 6

Электроны, вынесенные за скобки, называются валентными. Именно они принимают участие в образовании химических связей.

Исключение составляют:

24 Cr = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 = [ 18 Аr]Зd 5 4s 1 (а не 3d 4 4s 2 !),

29 Cu = 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 = [ 18 Ar]3d 10 4s 1 (а не 3d 9 4s 2 !).

Примеры заданий части А

1. Название, не относящееся к изотопам водорода, – это

1) дейтерий

2) оксоний


2. Формула валентных подуровней атома металла – это


3. Число неспаренных электронов в основном состоянии атома железа равно


4. В возбужденном состоянии атома алюминия число неспаренных электронов равно


5. Электронная формула 3d 9 4s 0 отвечает катиону


6. Электронная формула аниона Э 2- 3s 2 3p 6 отвечает элементу


7. Суммарное число электронов в катионе Mg 2+ и анионе F - равно

Электрон имеет двойственную природу: в разных экспериментах он может проявлять свойства частицы и волны. Свойства электрона как частицы : масса, заряд; волновые свойства ‑ в особенностях движения, интерференция и дифракция.

Движение электрона подчиняется законам квантовой механики .

Основные характеристики, определяющие движение электрона вокруг ядра: энергия и пространственные особенности соответствующей орбитали.

При взаимодействии (перекрывании) атомных орбиталей (АО) , принадлежащих двум или более атомам, образуются молекулярные орбитали (МО) .

Молекулярные орбитали заполняются обобществленными электронами и осуществляют ковалентную связь .

Перед образованием молекулярных орбиталей может происходить гибридизация атомных орбиталей одного атома.

Гибридизация – изменение формы некоторых орбиталей при образовании ковалентной связи для более эффективного их перекрывания. Образуются одинаковые гибридные АО , которые участвуют в образовании МО , перекрываясь атомным орбиталями других атомов. Гибридизация возможна лишь для атомов, образующих химические связи, но не для свободных атомов.


Углеводороды

Основные вопросы:

  1. Углеводороды. Классификация. Номенклатура.
  2. Строение. Свойства.
  3. Применение углеводородов.

Углеводороды – класс органических соединений, которые состоят из двух элементов: углерода и водорода.

Выбрать изомеры и гомологи:

Назвать алканы:

____________________________________________

__________________________________________


Ä реакция нитрования (реакция Коновалова, 1889 ) – реакция замещения водорода на нитрогруппу.

Условия : 13% НNO 3 , t = 130 – 140 0 C, Р= 15 – 10 5 Па. В промышленном масштабе нитрование алканов проводят в газовой фазе при 150 – 170 0 С оксидом азота (ІV) или парами азотной кислоты.

СН 4 + НО – NO 2 → CН 3 – NO 2 + Н 2 О

нитрометан

@ Решить задания:

1. Состав алканов отражает общая формула:

а) С n H 2 n +2 ; б) С n H 2 n -2 ; в) С n H 2 n ; г) С n H 2 n -6 .

2. С какими реагентами могут взаимодействовать алканы:

а) Br 2 (раствор); б) Br 2 , t 0 ; в) Н 2 SO 4 ; г) НNO 3 (разбав.), t 0 ; д ) КМnО 4 ; е ) КОН?

Ответы: 1) реагенты а, б, г, д ; 2) реагенты б, в, е ;

3) реагенты б, г ; 4) реагенты б, г, д, е .

  1. Установить соответствие между типом реакции и схемой (уравнением) реакции:
  1. Укажите вещество, которое образуется при полном хлорировании метана:

а) трихлорметан; б) тетрахлорметан; в) дихлорметан; г) тетрахлорэтан.

  1. Укажите наиболее вероятный продукт монобромирования 2,2,3-триметилбутана:

а) 2-бром-2,3,3-триметилбутан; б) 1-бром-2,2,3-триметилбутан;

в) 1-бром-2,3,3-триметилбутан; г) 2-бром-2,2,3-триметилбутан.

Составьте уравнение реакции.

Реакция Вюрца действие металлического натрия на галогенопроизводные углеводородов. При взаимодействии двух разных галогенопроизводных образуется смесь углеводородов, которая может быть разделена перегонкой.

СН 3 І + 2 Na + СН 3 І → С 2 Н 6 + 2 NaІ

@ Решить задания:

1. Укажите название углеводорода, который образуется при нагревании бромэтана с металлическим натрием:

а) пропан; б) бутан; в) пентан; г) гексан; д) гептан.

Составить уравнение реакции.

  1. Какие углеводороды образуются при действии металлического натрия на смесь:

а) иодметана и 1-бром-2-метилпропана; б) 2-бромпропана и 2-бромбутана?

Циклоалканы

1. Для малых циклов (С 3 – С 4) характерны реакции присоединения водорода, галогенов и галогеноводородов. Реакции сопровождаются размыканием цикла.

2. Для других циклов (С 5 и выше) характерны реакции замещения.


Непредельные углеводороды (ненасыщенные):

Алкены (олефины, ненасыщенные углеводороды с двойной связью, этиленовые углеводороды): Строение: sp 2 -гибридизация, плоскостное размещение орбиталей (плоский квадрат). Реакции: присоединения (гидрование, галогенирование, гидрогалогенирование, полимеризация), замещения(не характерны),окисления (горение, КМnO 4), разложения (без доступа кислорода).

@ Решить задания:

  1. Какова гибридизация атомов углерода в молекуле алкена:

а) 1 и 4 – sp 2 , 2 и 3 – sp 3 ; б) 1 и 4 – sp 3 , 2 и 3 – sp 2 ;

в) 1 и 4 – sp 3 , 2 и 3 – sp; г) 1 и 4 – не гибридизованы, 2 и 3 – sp 2 .

2. Назвать алкен:



  1. Составить уравнения реакций на примере бутена-1, назвать полученные продукты.

4. В приведенной ниже схеме превращений этилен образуется в реакции:

а) 1 и 2; б) 1 и 3; в) 2 и 3;

г) этилен не образуется ни в одной реакции.

  1. Какая реакция идет против правила Марковникова:

а)СН 3 – СН = СН 2 + НВr →; б) СН 3 – СН = СН 2 + Н 2 O →;;

в) СН 3 – СН = СН – CH 2 + НCI →; г) СCI 3 – СН = СН 2 + НCI →?


þ Диены с сопряженными связями: гидрование 1,3-бутадиена – образуется 2-бутен (1,4-присоединение):

þ гидрирование 1,3-бутадиена в присутствии катализатора Nі ‑ бутан:

þ галогенирование 1,3-бутадиена – 1,4-присоединение (1,4 – дибром-2-бутен):

þ полимеризация диенов:


Полиены (ненасыщенные углеводороды со многими двойными связями) – это углеводороды, в составе молекул которых содержится не меньше трёх двойных связей.

Получение диенов:

Ø действие спиртового раствора щелочи:

Ø способ Лебедева (синтез дивинила):

Ø дегидратация гликолей (алкандиолов):

Алкины (ацетиленовые углеводороды, углеводороды с одной тройной связью): Строение: sp-гибридизация, линейное размещение орбиталей. Реакции: присоединения (гидрование, галогенирование, гидрогалогенирование, полимеризация), замещения(образование солей),окисления (горение, КМnO 4), разложения (без доступа кислорода). 5-метилгексин-2 1-пентин 3-метилбутин-1

1. Какие углеводороды соответствуют общей формуле С n H 2n-2: а) ацетиленовые, диеновые; б) этиленовые, диеновые; в) циклоалканы, алкены; г) ацетиленовые, ароматические? 2. Тройная связь является сочетанием: а) трехσ-связей; б) одной σ-связи и двух π-связей; в) двух σ-связей и одной π-связи; г) трехπ-связей. 3. Составить формулу 3-метилпентина -3.
І. Реакции присоединения
v Гидрирование происходит через стадию образования алкенов:
v Присоединение галогенов происходит хуже, чем в алкенах: Алкины обесцвечивают бромную воду (качественная реакция ).
v Присоединение галогенводородов:
Продукты присоединения к нессиметричным алкинам определяются правилом Марковникова:
v Присоединение воды (гидратация) – реакция М.Г.Кучерова, 1881.
Для гомологов ацетилена продуктом присоединения воды является кетон:
ІІІ. Образование солей (кислотные свойства) –реакции замещения
ð Взаимодействие с активными металлами : Ацетилениды используют для синтеза гомологов.
ð Взаимодействие алкинов с аммиачными растворами оксида серебра или хлорида меди(І) :
Качественная реакция на конечную тройную связь ‑ образование серовато-белого осадка ацетиленида серебра или красно-коричневого – ацетиленида меди (І): НС ≡ СН + СuCI → СuC ≡ ССu ↓ + 2HCI Реакция не происходит
ІV. Реакции окисления
Ÿ Мягкое окисление – обесцвечивание водного раствора перманганата калия (качественная реакция на кратную связь ): При взаимодействии ацетилена с разбавленным раствором КМnО 4 (комнатная температура) ‑ щавелевая кислота .

ОРБИТАЛЬ - область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).

К настоящему моменту описано пять типов орбиталей: s, p, d, f и g.
Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии.

s-Орбитали - имеют сферическую форму и одинаковую электронную плотность в направлении каждой оси трехмерных координат
s- орбиталь - орбиталь сфера

Каждая р-орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р-орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:
p- орбиталь - орбиталь гантель

d- орбиталь - орбиталь сложной формы

Энергия электронных уровней


Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел:

n - энергетический уровень электрона (удаленность уровня от ядра)
l - по какого вида орбитали он движется (s,p,d...)
m- магнитного (на какой из p (из трех возможных), d (из 5-ти возможных) и т.д.
s - спинового (движение электрона вокруг собственной оси).

Принципы заполнения орбиталей

1. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами) (принцип Паули).

2. В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной.
Энергия орбиталей возрастает в ряду:
1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s.
Нет никакой необходимости запоминать эту последовательность. Ее можно извлечь из Периодической таблицы Д.И.Менделеева

3. Электроны предпочитают расселяться на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одиночке, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Когда орбиталь заселяется двумя электронами, такие электроны называют спаренными .(правило Хунда)

Полная электронная формула элемента

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1. Число n минимально
2. Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально)
3. Один подуровень содержит наибольшее число неспаренных электронов.
4. При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n2 электронов, расположенных на n2 подуровнях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так.

Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.

s -Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:

На первом электронном уровне каждого атома находится только одна s- орбиталь. Начиная со второго электронного уровня помимо s- орбитали появляются также три р -орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р -электрона в районе атомного ядра. Каждая р -орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р -орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:

В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.

У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s -орбитали (отмечены синим цветом) и по одному электрону на двух р -орбиталях (отмечены красным и желтым цветом), третья орбиталь – р z -вакантная:

Гибридизация.

В том случае, когда атом углерода участвует в образовании насыщенных соединений (не содержащих кратных связей), одна s- орбиталь и три р -орбитали объединяются, образуя новые орбитали, представляющие собой гибриды исходных орбиталей (процесс называют гибридизацией). Количество гибридных орбиталей всегда равно количеству исходных, в данном случае, четыре. Получившиеся орбитали-гибриды одинаковы по форме и внешне напоминают асимметричные объемные восьмерки:

Вся конструкция оказывается как бы вписанной в правильный тетраэдр – призма, собранная из правильных треугольников. При этом орбитали-гибриды располагаются вдоль осей такого тетраэдра, угол между любыми двумя осями – 109°. Четыре валентных электрона углерода располагаются на этих гибридных орбиталях:

Участие орбиталей в образовании простых химических связей.

Свойства электронов, разместившихся на четырех одинаковых орбиталях, эквивалентны, соответственно, будут эквивалентны химические связи, образованные с участием этих электронов при взаимодействии с атомами одного типа.

Взаимодействие атома углерода с четырьмя атомами водорода сопровождается взаимоперекрыванием вытянутых гибридных орбиталей углерода со сферическими орбиталями водородов. На каждой орбитали находится по одному электрону, в результате перекрывания каждая пара электронов начинает перемещаться по объединенной – молекулярной орбитали.

Гибридизация приводит лишь к изменению формы орбиталей внутри одного атома, а перекрывание орбиталей двух атомов(гибридных или обычных)приводит к образованию химической связи между ними. В данном случае (см . рисунок, помещенный ниже) максимальная электронная плотность располагается вдоль линии, связывающей два атома. Такую связь называют s -связью.

В традиционном написании структуры образовавшегося метана вместо перекрывающихся орбиталей используют символ валентной черты. Для объемного изображения структуры валентность, направленную от плоскости чертежа к зрителю показывают в виде сплошной клиновидной линии, а валентность, уходящую за плоскость рисунка – в виде штриховой клиновидной линии:

Таким образом, структура молекулы метана определяется геометрией гибридных орбиталей углерода:

Образование молекулы этана аналогично показанному выше процессу, отличие состоит в том, что при взаимоперекрывании гибридных орбиталей двух атомов углерода происходит образование С-С – связи:

Геометрия молекулы этана напоминает метан, валентные углы 109°, что определяется пространственным расположением гибридных орбиталей углерода:

Участие орбиталей в образовании кратных химических связей.

Молекула этилена образована также с участием орбиталей-гибридов, однако в гибридизации участвуют одна s -орбиталь и только две р -орбитали (р х и р у ), третья орбиталь – p z , направленная вдоль оси z , в образовании гибридов не участвует. Из исходных трех орбиталей возникают три гибридных орбитали, которые располагаются в одной плоскости, образуя трехлучевую звезду, углы между осями – 120°:

Два атома углерода присоединяют четыре атома водорода, а также соединяются между собой, образуя s -связь С-С:

Две орбитали p z , не участвовавшие в гибридизации, взаимоперекрываются, их геометрия такова, что перекрывание происходит не по линии связи С-С, а выше и ниже ее. В результате образуются две области с повышенной электронной плотностью, где помещаются два электрона (отмечены синим и красным цветом), участвующие в образовании этой связи. Таким образом, образуется одна молекулярная орбиталь, состоящая из двух областей, разделенных в пространстве. Связь, у которой максимальная электронная плотность расположена вне линии, связывающей два атома, называют p -связью:

Вторая валентная черта в обозначении двойной связи, широко используемая для изображения ненасыщенных соединений уже не одно столетие, в современном понимании подразумевает наличие двух областей с повышенной электронной плотностью, расположенных по разные стороны линии связи С-С.

Структура молекулы этилена задана геометрией гибридных орбиталей, валентный угол Н-С-Н – 120°:

При образовании ацетилена в гибридизации участвует одна одна s -орбиталь и одна р x -орбиталь (орбитали p y и p z , в образовании гибридов не участвуют). Две образовавшиеся гибридные орбитали располагаются на одной линии, вдоль оси х :

Взаимоперекрывание орбиталей-гибридов друг с другом и с орбиталями атомов водорода приводит к образованию s -связей С-С и С-Н, изображаемых с помощью простой валентной черты:

Две пары оставшихся орбиталей p y и p z взаимоперекрываются. На рисунке, приведенном ниже, цветными стрелками показано, что из чисто пространственных соображений наиболее вероятно перекрывание орбиталей с одинаковыми индексами х-х и у-у . В результате образуются две p -связи, окружающие простую s -связь С-С:

В итоге молекула ацетилена имеет палочкообразную форму:

У бензола остов молекулы собран из атомов углерода, имеющих гибридные орбитали, составленные из одной s - и двух р -орбиталей, расположенные в форме трехлучевой звезды (как у этилена), р -орбитали, не участвующие в гибридизации, показаны полупрозрачными:

В образовании химических связей могут также участвовать вакантные, то есть, не содержащие электронов орбитали ().

Орбитали высоких уровней.

Начиная с четвертого электронного уровня, у атомов появляются пять d -орбиталей, их заполнение электронами происходит у переходных элементов, начиная со скандия. Четыре d -орбитали имеют форму объемных четырехлистников, называемых иногда «клеверным листом», они отличаются лишь ориентацией в пространстве, пятая d -орбиталь представляет собой объемную восьмерку, продетую в кольцо:

d -Орбитали могут образовывать гибриды с s- и p- орбиталями. Параметры d -орбиталей обычно используют при анализе строения и спектральных свойств в комплексах переходных металлов.

Начиная с шестого электронного уровня, у атомов появляются семь f -орбиталей, их заполнение электронами происходит в атомах лантаноидов и актиноидов. f -Орбитали имеют довольно сложную конфигурацию, ниже на рисунке показана форма трех из семи таких орбиталей, имеющих одинаковую форму и ориентированных в пространстве различным образом:

f -Орбитали весьма редко используют при обсуждении свойств различных соединений, поскольку расположенные на них электроны практически не принимают участия в химических превращениях..

Перспективы.

На восьмом электронном уровне находится девять g -орбиталей. Элементы, содержащие электроны на этих орбиталях, должны появится в восьмом периоде, пока они недоступны (в ближайшее время ожидается получение элемента № 118, последнего элемента седьмого периода Периодической системы, его синтез проводят в Объединенном институте ядерных исследований в Дубне).

Форма g -орбиталей, вычисленная методами квантовой химии, еще более сложная, чем у f -орбиталей, область наиболее вероятного местонахождения электрона в данном случае выглядит весьма причудливо. Ниже показан внешний вид одной из девяти таких орбиталей:

В современной химии представления об атомных и молекулярных орбиталях широко используют при описании строения и реакционных свойств соединений, также при анализе спектров различных молекул, в некоторых случаях – для прогнозирования возможности протекания реакций.

Михаил Левицкий

Понравилось? Лайкни нас на Facebook