Нод взаимно простые числа. Наибольший общий делитель, взаимно простые числа

Одинаковых подарков можно составить из 48 конфет «Ласточка» и 36 конфет «Чебурашка», если надо использовать все конфеты?

Решение. Каждое из чисел 48 и 36 должно делиться на число подарков. Поэтому сначала выпишем все делители числа 48.

Получим: 2, 3, 4, 6, 8, 12, 16, 24, 48.

Затем выпишем все делители числа 36.

Получим: 1, 2, 3, 4, 6, 9, 12, 18, 36.

Общими делителями чисел 48 и 36 будут: 1, 2, 3, 4, 6, 12.

Видим, что наибольшим из этих чисел является 12. Его называют наибольший общим делителем чисел 48 и 36.

Значит, можно составить 12 подарков. В каждом подарке будет 4 конфеты «Ласточка» (48:12=4) и 3 конфеты «Чебурашка» (36:12=3).

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.

Что такое взаимно простые числа

Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.

Определение 1

Взаимно простыми будут два таких числа a и b , наибольший общий делитель которых равен 1 , т.е. НОД (a , b) = 1 .

Из данного определения можно сделать вывод, что единственный положительный общий делитель у двух взаимно простых чисел будет равен 1 . Всего два таких числа имеют два общих делителя – единицу и минус единицу.

Какие можно привести примеры взаимно простых чисел? Например, такой парой будут 5 и 11 . Они имеют только один общий положительный делитель, равный 1 , что является подтверждением их взаимной простоты.

Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.

Это утверждение иллюстрирует следующий пример: составные числа - 9 и 8 образуют взаимно простую пару. Докажем это, вычислив их наибольший общий делитель. Для этого запишем все их делители (рекомендуем перечитать статью о нахождении делителей числа). У 8 это будут числа ± 1 , ± 2 , ± 4 , ± 8 , а у 9 – ± 1 , ± 3 , ± 9 . Выбираем из всех делителей тот, что будет общим и наибольшим – это единица. Следовательно, если НОД (8 , − 9) = 1 , то 8 и - 9 будут взаимно простыми по отношению друг к другу.

Взаимно простыми числами не являются 500 и 45 , поскольку у них есть еще один общий делитель – 5 (см. статью о признаках делимости на 5). Пять больше единицы и является положительным числом. Другой подобной парой могут быть - 201 и 3 , поскольку их оба можно разделить на 3 , на что указывает соответствующий признак делимости.

На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.

Пример 1

Условие: выясните, являются ли взаимно простыми числа 275 и 84 .

Решение

Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.

Вычисляем наибольший общий делитель, используя алгоритм Евклида: 275 = 84 · 3 + 23 , 84 = 23 · 3 + 15 , 23 = 15 · 1 + 8 , 15 = 8 · 1 + 7 , 8 = 7 · 1 + 1 , 7 = 7 · 1 .

Ответ: поскольку НОД (84 , 275) = 1 , то данные числа будут взаимно простыми.

Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.

Определение 2

Взаимно простыми целые числа a 1 , a 2 , … , a k , k > 2 будут тогда, когда они имеют наибольший общий делитель, равный 1 .

Иными словами, если у нас есть набор некоторых чисел с наибольшим положительным делителем, большим 1 , то все эти числа не являются по отношению друг к другу взаимно обратными.

Возьмем несколько примеров. Так, целые числа − 99 , 17 и − 27 – взаимно простые. Любое количество простых чисел будет взаимно простым по отношению ко всем членам совокупности, как, например, в последовательности 2 , 3 , 11 , 19 , 151 , 293 и 667 . А вот числа 12 , − 9 , 900 и − 72 взаимно простыми не будут, потому что кроме единицы у них будет еще один положительный делитель, равный 3 . То же самое относится к числам 17 , 85 и 187: кроме единицы, их все можно разделить на 17 .

Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.

Пример 2

Условие: определите, являются ли числа 331 , 463 и 733 взаимно простыми.

Решение

Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.

Ответ: все эти числа будут взаимно простыми по отношению друг к другу.

Пример 3

Условие: приведите доказательство того, что числа − 14 , 105 , − 2 107 и − 91 не являются взаимно простыми.

Решение

Начнем с выявления их наибольшего общего делителя, после чего убедимся, что он не равен 1 . Поскольку у отрицательных чисел те же делители, что и у соответствующих положительных, то НОД (− 14 , 105 , 2 107 , − 91) = НОД (14 , 105 , 2 107 , 91) . Согласно правилам, которые мы привели в статье о нахождении наибольшего общего делителя, в данном случае НОД будет равен семи.

Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.

Основные свойства взаимно простых чисел

Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.

Определение 3

Если разделить целые числа a и b на число, соответствующее их наибольшему общему делителю, мы получим взаимно простые числа. Иначе говоря, a: НОД (a , b) и b: НОД (a , b) будут взаимно простыми.

Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.

Определение 4

Необходимым и достаточным условием взаимной простоты чисел a и b является существование таких целых чисел u 0 и v 0 , при которых равенство a · u 0 + b · v 0 = 1 будет верным.

Доказательство 1

Начнем с доказательства необходимости этого условия. Допустим, у нас есть два взаимно простых числа, обозначенных a и b . Тогда по определению этого понятия их наибольший общий делитель будет равен единице. Из свойств НОД нам известно, что для целых a и b существует соотношение Безу a · u 0 + b · v 0 = НОД (a , b) . Из него получим, что a · u 0 + b · v 0 = 1 . После этого нам надо доказать достаточность условия. Пусть равенство a · u 0 + b · v 0 = 1 будет верным, в таком случае, если НОД (a , b) делит и a , и b , то он будет делить и сумму a · u 0 + b · v 0 , и единицу соответственно (это можно утверждать, исходя из свойств делимости). А такое возможно только в том случае, если НОД (a , b) = 1 , что доказывает взаимную простоту a и b .

В самом деле, если a и b являются взаимно простыми, то согласно предыдущему свойству, будет верным равенство a · u 0 + b · v 0 = 1 . Умножаем обе его части на c и получаем, что a · c · u 0 + b · c · v 0 = c . Мы можем разделить первое слагаемое a · c · u 0 + b · c · v 0 на b , потому что это возможно для a · c , и второе слагаемое также делится на b , ведь один из множителей у нас равен b . Из этого заключаем, что всю сумму можно разделить на b , а поскольку эта сумма равна c , то c можно разделить на b .

Определение 5

Если два целых числа a и b являются взаимно простыми, то НОД (a · c , b) = НОД (c , b) .

Доказательство 2

Докажем, что НОД (a · c , b) будет делить НОД (c , b) , а после этого – что НОД (c , b) делит НОД (a · c , b) , что и будет доказательством верности равенства НОД (a · c , b) = НОД (c , b) .

Поскольку НОД (a · c , b) делит и a · c и b , а НОД (a · c , b) делит b , то он также будет делить и b · c . Значит, НОД (a · c , b) делит и a · c и b · c , следовательно, в силу свойств НОД он делит и НОД (a · c , b · c) , который будет равен c · НОД (a , b) = c . Следовательно, НОД (a · c , b) делит и b и c , следовательно, делит и НОД (c , b) .

Также можно сказать, что поскольку НОД (c , b) делит и c , и b , то он будет делить и c , и a · c . Значит, НОД (c , b) делит и a · c и b , следовательно, делит и НОД (a · c , b) .

Таким образом, НОД (a · c , b) и НОД (c , b) взаимно делят друг друга, значит, они являются равными.

Определение 6

Если числа из последовательности a 1 , a 2 , … , a k будут взаимно простыми по отношению к числам последовательности b 1 , b 2 , … , b m (при натуральных значениях k и m), то их произведения a 1 · a 2 · … · a k и b 1 · b 2 · … · b m также являются взаимно простыми, в частности, a 1 = a 2 = … = a k = a и b 1 = b 2 = … = b m = b , то a k и b m – взаимно простые.

Доказательство 3

Согласно предыдущему свойству, мы можем записать равенства следующего вида: НОД (a 1 · a 2 · … · a k , b m) = НОД (a 2 · … · a k , b m) = … = НОД (a k , b m) = 1 . Возможность последнего перехода обеспечивается тем, что a k и b m взаимно просты по условию. Значит, НОД (a 1 · a 2 · … · a k , b m) = 1 .

Обозначим a 1 · a 2 · … · a k = A и получим, что НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = НОД (b 1 · b 2 · … · b m , A) = НОД (b 2 · … · b · b m , A) = … = НОД (b m , A) = 1 . Это будет справедливым в силу последнего равенства из цепочки, построенной выше. Таким образом, у нас получилось равенство НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = 1 , с помощью которого можно доказать взаимную простоту произведений a 1 · a 2 · … · a k и b 1 · b 2 · … · b m

Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.

Понятие попарно простых чисел

Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.

Определение 7

Попарно простые числа – это последовательность целых чисел a 1 , a 2 , … , a k , где каждое число будет взаимно простым по отношению к остальным.

Примером последовательности попарно простых чисел может быть 14 , 9 , 17 , и − 25 . Здесь все пары (14 и 9 , 14 и 17 , 14 и − 25 , 9 и 17 , 9 и − 25 , 17 и − 25) взаимно просты. Отметим, что условие взаимной простоты является обязательным для попарно простых чисел, но взаимно простые числа будут попарно простыми далеко не во всех случаях. Например, в последовательности 8 , 16 , 5 и 15 числа не являются таковыми, поскольку 8 и 16 не будут взаимно простыми.

Также следует остановиться на понятии совокупности некоторого количества простых чисел. Они всегда будут и взаимно, и попарно простыми. Примером может быть последовательность 71 , 443 , 857 , 991 . В случае с простыми числами понятия взаимной и попарной простоты будут совпадать.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Разделы: Математика , Конкурс «Презентация к уроку»

Класс: 6

Презентация к уроку





Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Данная работа предназначена для сопровождения объяснения новой темы. Практические и домашние задания учитель подбирает на свое усмотрение.

Оборудование: компьютер, проектор, экран.

Ход объяснения

Слайд 1. Наибольший общий делитель.

Устная работа.

1. Вычислите:

а)

0,7
* 10
: 2
- 0,3
: 0,4
_________
?

б)

5
: 10
* 0,2
+ 2
: 0,7
_______
?

Ответы: а) 8; б) 3.

2. Опровергните утверждение: Число “2” является общим делителем всех чисел”.

Очевидно, что нечетные числа не делятся на 2.

3. Как называются числа, кратные 2?

4. Назовите число, которое является делителем любого числа.

Письменно.

1. Разложите число 2376 на простые множители.

2. Найдите все общие делители чисел 18 и 60.

Делители числа 18: 1; 2; 3; 6; 9; 18.

Делители числа 60: 1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60.

Назовите наибольший общий делитель чисел 18 и 60.

Попробуйте сформулировать, какое число называют наибольшим общим делителем двух натуральных чисел

Правило. Наибольшее натуральное число, на которое делятся без остатка числа , называют наибольшим общим делителем.

Пишут: НОД (18; 60) = 6.

Скажите, пожалуйста, удобен ли рассмотренный способ нахождения НОД?

Числа могут быть слишком большие и для них трудно перечислить все делители.

Давайте попытаемся найти другой способ нахождения НОД.

Разложим числа 18 и 60 на простые множители:

18 =

Приведите примеры делителей числа 18.

Числа: 1; 2; 3; 6; 9; 18.

Приведите примеры делителей числа 60.

Числа: 1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30; 60.

Приведите примеры общих делителей чисел 18 и 60.

Числа: 1; 2; 3; 6.

Как можно найти наибольший общий делитель 18 и 60?

Алгоритм.

1. Разложить данные числа на простые множители.

Простые и составные числа

Определение 1 . Общим делителем нескольких натуральных чисел называют число, которое является делителем каждого из этих чисел.

Определение 2 . Самый большой из общих делителей называют наибольшим общим делителем (НОД) .

Пример 1 . Общими делителями чисел 30 , 45 и 60 будут числа 3 , 5 , 15 . Наибольшим общим делителем этих чисел будет

НОД (30 , 45 , 10) = 15 .

Определение 3 . Если наибольший общий делитель нескольких чисел равен 1 , то эти числа называют взаимно простыми .

Пример 2 . Числа 40 и 3 будут взаимно простыми числами, а числа 56 и 21 не являются взаимно простыми, поскольку у чисел 56 и 21 есть общий делитель 7 , который больше, чем 1.

Замечание . Если числитель дроби и знаменатель дроби являются взаимно простыми числами, то такая дробь несократима .

Алгоритм нахождения наибольшего общего делителя

Рассмотрим алгоритм нахождения наибольшего общего делителя нескольких чисел на следующем примере.

Пример 3 . Найти наибольший общий делитель чисел 100, 750 и 800 .

Решение . Разложим эти числа на простые множители :

Простой множитель 2 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 1 , в третье разложение – в степени 5 . Обозначим наименьшую из этих степеней буквой a . Очевидно, что a = 1 .

Простой множитель 3 в первое разложение на множители входит в степени 0 (другими словами, множитель 3 в первое разложение на множители вообще не входит), во второе разложение входит в степени 1 , в третье разложение – в степени 0 . Обозначим наименьшую из этих степеней буквой b . Очевидно, что b = 0 .

Простой множитель 5 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 3 , в третье разложение – в степени 2 . Обозначим наименьшую из этих степеней буквой c . Очевидно, что c = 2 .

09.07.2015 6119 0

Цели: формировать навык нахождения наибольшего общего делителя; ввести понятие взаимно простых чисел; отрабатывать умение решать задачи на использование НОД чисел; учить анализировать, делать выводы.

II. Устный счет

1. Может ли разложение на простые множители числа 24 753 содержать множитель 5? Почему? (Нет, так как запись данного числа не оканчивается цифрой 0 или 5.)

2. Назовите число, которое делится на все числа без остатка. (Нуль.)

3. Сумма двух целых чисел нечетна. Четно или нечетно их произведение? (Если сумма двух чисел нечетна, то одно число четно, второе нечетно. Так как один из множителей четное число, следовательно, он делится на 2, значит и произведение делится на 2. Тогда и все произведение четно.)

4. В одной семье у каждого из трех братьев есть сестра. Сколько детей в семье? (4 детей: трое мальчиков и одна их сестра.)

III . Индивидуальная работа

Разложите число 210 всеми возможными способами:

а) на 2 множителя; (210 = 21 · 10 = 14 · 15 = 7 · 30 = 70 · 3 = 6 · 35 = 42 · 5 = 105 · 2.)

б) на 3 множителя; (210 = 3 · 7 · 10 = 5 · 3 · 14 = 7 · 5 · 6 = 35 · 2 · 3 = 21 · 2 · 5 = 7 · 2 · 15.)

в) на 4 множителя. (210 = 3 · 7 · 2 · 5.)

IV. Сообщение темы урока

«Числа правят миром». Эти слова принадлежат древнегреческому математику Пифагору, жившему в V в. до н.э.

Сегодня мы познакомимся еще с одной группой чисел, которые называются взаимно простыми.

V. Изучение нового материала

1. Подготовительная работа.

№ 146 стр. 25 (на доске и в тетрадях). (Самостоятельно, в это время один ученик работает на обратной стороне доски.)

Найдите все делители каждого числа.

Подчеркните их общие делители.

Запишите наибольший общий делитель.

Ответ:

Какие числа имеют только один общий делитель? (35 и 88.)

2. Работа над новой темой.

(Самостоятельно, в это время один ученик работает на обратной стороне доски.)

Найдите наибольший общий делитель чисел: 7 и 21; 25 и 9; 8 и 12; 5 и 3; 15 и 40; 7 и 8.

Ответ:

НОД (7; 21) = 7; НОД (25; 9) = 1; НОД (8; 12) = 4;

НОД (5; 3)= 1; НОД (15; 40) = 5; НОД (7; 8) = 1.

У каких пар чисел одинаковый общий делитель? (25 и 9; 5 и 3; 7 и 8 - общий делитель 1.)

Такие числа называются взаимно простыми.

Дайте определение взаимно простых чисел.

Приведите примеры взаимно простых чисел. (35 и 88, 3 и 7; 12 и 35; 16 и 9.)

VI. Историческая минутка

Древние греки придумали замечательный способ, позволяющий искать наибольший общий делитель двух натуральных чисел без разложения на множители. Он носил название «Алгоритма Евклида».

О жизни греческого математика Евклида достоверные данные неизвестны. Ему принадлежит выдающееся научное произведение, называемое «Начала». Оно состоит из 13 книг и излагает основы всей древнегреческой математики.

Именно здесь описывается алгоритм Евклида, который заключается в том, что наибольшим общим делителем двух натуральных чисел является последний, отличный он нуля, остаток при последовательном делении этих чисел. Под последовательным делением подразумевается деление большего числа на меньшее, меньшего числа на первый остаток, первого остатка на второй остаток и т.д., пока деление не закончится без остатка. Положим, требуется найти НОД (455; 312), тогда

455: 312 = 1 (ост. 143), получаем 455 = 312 · 1 + 143.

312: 143 = 2 (ост. 26), 312 = 143 · 2 + 26,

143: 26 = 5 (ост. 13), 143 = 26 · 5 + 13,

26: 13 = 2 (ост. 0), 26 = 13 · 2.

Последний делитель или последний, отличный от нуля остаток 13 и будет искомым НОД (455; 312) = 13.

VII. Физкультминутка

VIII. Работа над задачей

1. № 152 стр. 26 (с подробным комментированием у доски и в тетрадях).

Прочитайте задачу.

О ком говорится в задаче?

О чем говорится в задаче?

Назовите 1-й вопрос задачи.

Как узнать, сколько ребят было на елке? (Найти НОД чисел 123 и 82.)

Прочитайте задание к этой задаче из тетрадей. (Количество апельсинов и яблок должно делиться на одно и то же наибольшее число.)

Как узнать, сколько апельсинов было в каждом подарке? (Все количество апельсинов разделить на количество присутствующих на елке детей.)

Как узнать, сколько яблок было в каждом подарке? (Все количество яблок разделить на количество присутствующих на елке детей.)

Запишите решение задачи в тетрадях на печатной основе.

Решение:

НОД (123; 82) = 41, значит, 41 человек.

123: 41 = 3 (ап.)

82: 41 = 2 (ябл.)

(Ответ: ребят 41, апельсинов 3, яблок 2.)

2. № 164 (2) стр. 27 (после краткого разбора, один ученик - на обратной стороне доски, остальные самостоятельно, потом самопроверка).

Прочитайте задачу.

Чему равна градусная мера развернутого угла?

Если один угол в 4 раза меньше, то что можно сказать про второй угол? (Он в 4 раза больше.)

Запишите это в краткую запись.

Каким способом будете решать задачу? (Алгебраическим.)

Решение:

1) Пусть х - градусная мера угла СОК,

4х - градусная мера угла KOD .

Так как сумма углов СОК и KOD равна 180°, то составим уравнение:

х + 4х = 180

5х = 180

х = 180: 5

х = 36; 36° - градусная мера угла СОК.

2) 36 · 4 = 144° - градусная мера угла KOD .

(Ответ: 36°, 144°.)

Постройте эти углы.

Определите вид углов СОК и KOD . (Угол СОК - острый, угол KOD - тупой.)

Почему?

IX. Закрепление изученного материала

1. № 149 стр. 26 (у доски с подробным комментарием).

Что нужно сделать, чтобы определить, являются ли числа взаимно простыми? (Найти их наибольший общий делитель, если он равен 1, то числа взаимно простые.)

2. № 150 стр. 26 (устно).

Подтвердите свой ответ. (9 и 14; 14 и 15; 14 и 27 - пары взаимно простых чисел, так как их НОД равен 1.)

3. № 151 стр. 26 (один ученик у доски, остальные в тетрадях).

(Ответ: .)

Кто не согласен?

4. Устно, с подробным объяснением.

Как находят наибольший общий делитель нескольких натуральных чисел? (Находят так же, как и двух чисел.)

Найдите наибольший общий делитель чисел:

а) 18, 14 и 6; б) 26, 15 и 9; в) 12, 24, 48; г) 30, 50, 70.

Решение:

а) 1. Проверим, делятся ли числа 18 и 14 на 6. Нет.

2. Разложим на простые множители наименьшее число 6 = 2 · 3.

3. Проверим, делятся ли числа 18 и 14 на 3. Нет.

4. Проверим, делятся ли числа 18 и 14 на 2. Да. Следовательно, НОД (18; 14; 6) = 2.

б) НОД (26; 15; 9) = 1.

Что можно сказать об этих числах? (Они взаимно простые.)

в) НОД (12; 24; 48) = 12.

г) НОД (30; 50; 70) = 10.

X. Самостоятельная работа

Взаимопроверка. (На закрывающейся доске записаны ответы.)

Вариант I. № 161 (а, б) стр. 27, № 157 (б - 1 и 3 число) стр. 27.

Вариант II . № 161 (в, г) стр. 27, № 157 (б - 2 и 3 число) стр. 27.

XI. Подведение итогов урока

Какие числа называют взаимно простыми?

Как можно узнать, являются ли данные числа взаимно простыми?

Как найти наибольший общий делитель нескольких натуральных чисел?

Домашнее задание

№ 169 (6), 170 (в, г), 171, 174 стр. 28.

Дополнительное задание: При перестановке цифр простого числа 311 опять получится простое число (проверьте это по таблице простых чисел). Найдите все двузначные числа, обладающие таким же свойством. (113, 131; 13, 31; 17, 71; 37, 73; 79, 97.)

Понравилось? Лайкни нас на Facebook