Получение и применение карбоновых кислот. Карбоновые кислоты и их химические свойства Химические свойства получения и применения карбоновых кислот

Окисление насыщенных углеводородов кислородом на специальных катализаторах до карбоновых кислот осуществляют в промышленности, однако селективностью этот способ не отличается. Как правило, получаются смеси карбоновых кислот, поскольку при окислении происходит разрыв различных углерод-углеродных связей.

Значительно более селективным является окисление алкенов сильными окислителями. При нагревании алкенов, имеющих по одному атому водорода у каждого атома углерода двойной связи, со щелочным раствором перманганата калия образуется смесь двух карбоновых кислот. Если же алкен симметричный, то образуются две молекулы одной карбоновой кислоты. Такое же окисление можно осуществить и при нагревании алкенов с концентрированной азотной кислотой.

Аналогично при окислении щелочным раствором перманганата калия алкинов получают карбоновые кислоты. Так, например, уксусную кислоту можно получить, окисляя либо 2-бутен, либо 2-бутин.

Алкилбензолы окисляют до бензойной кислоты либо кислородом на катализаторах (в промышленности), либо нагреванием с перманганатом калия. Например, кипячение толуола с водным раствором перманганата калия с последующим подкислением раствора приводит к бензойной кислоте.

Карбоновые кислоты могут быть получены также окислением первичных спиртов или альдегидов. В качестве окислителей обычно используют соединения хрома в высшей степени окисления, например, хромовый ангидрид, перманганат калия в щелочной среде, концентрированную азотную кислоту. Альдегиды легко окисляются и другими окислителями, напрмер, аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

1.2. Синтез карбоновых кислот из галогенопроизводных

1.2.1.Синтез карбоновых кислот через нитрилы

Алкилгалогениды взаимодействием с цианидом натрия превращают в алкилцианиды, которые являются нитрилами карбоновых кислот. Последние гидролизуют в кислой среде до карбоновых кислот.

Таким образом, происходит двухстадийное замещение атома галогена в молекуле галогенопроизводного на карбоксильную группу. Так, для получения валериановой кислоты (5 атомов углерода) необходимо исходить из бутилгалогенида.

1-бромбутан нитрил валериановая кислота

валериановой кислоты

1.2.2. Синтез карбоновых кислот реакцией Гриньяра

Реактивы Гриньяра, которые получают из галогенопроизводных взаимодействием с металлическим магнием, представляют собой нуклеофильные реагенты. Поэтому для синтеза из них карбоновых кислот используют реакцию карбоксилирования с помощью электрофильного диоксида углерода.

Для получения этим методом бензойной кислоты в качестве исходного галогенопроизводного необходимо взять, например, бромбензол, который реакцией с магнием, последующим взаимодействием фенилмагнийбромида с диоксидом углерода и заключительным гидролизом магниевой соли превращают в бензойную кислоту.

1.3. Гидролиз производных карбоновых кислот

Подобно нитрилам и солям, о гидролизе которых речь уже шла, и другие производные карбоновых кислот гидролизуются до карбоновых кислот. Реакции могут катализироваться как кислотами, так и щелочами. Например, при гидролизе метилового эфира пропановой кислоты, катализируемом сильной минеральной кислотой, образуется пропановая кислота и метанол.

При нагревании ацетанилида (фениламида уксусной кислоты) с водным раствором едкого натра получается ацетат натрия и анилин.

Гидролиз молекулы ангидрида бензойной кислоты приводит к образованию двух молекул бензойной кислоты.

Подробнее о катализе и механизме гидролиза речь будет идти в разделах, посвященных производным карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Число карбоксильных групп характеризует основность кислоты.

В зависимости от количества карбоксильных групп карбоновые кислоты подразделяются на одноосновные карбоновые кислоты (содержат одну карбоксильную группу), двухосновные (содержат две карбоксильные группы) и многоосновные кислоты.

В зависимости от вида радикала, связанного с карбоксильной группой, карбоновые кислоты делятся на предельные, непредельные и ароматические. Предельные и непредельные кислоты объединяют под общим названием кислоты алифатического или жирного ряда.

  1. Одноосновные карбоновые кислоты

1.1 Гомологический ряд и номенклатура

Гомо­логический ряд одноосновных предельных карбоновых кислот (иногда их называют жирными кислотами) начинается с муравьиной кислоты

Формула гомологического ряда

Номенклатура ИЮПАК разрешает сохранять для многих кислот их тривиальные названия, которые обычно указывают на природный источник, из которого была выделена та или иная кислота, например, муравьиная, уксусная, масляная, валериановая и т.д.

Для более сложных случаев названия кислот производят от названия уг­леводородов с тем же числом атомов углерода, что и в молеку­ле кислоты, с добавлением окончания -овая и слова кислота. Муравьиная кислота Н-СООН называется метановой кисло­той, уксусная кислота СН 3 -СООН - этановой кислотой и т. д.

Таким образом, кислоты рассматриваются как производные углеводородов, одно звено которых превращено в карбоксил:

При составлении названий кислот с разветвленной цепью по рациональной номенклатуре их рассматривают как производные уксусной кислоты, в молекуле которой атомы водорода замещены радикалами, например, триметилуксусная кислота (СН 3) 3 С – СООН.

1.2 Физические свойства карбоновых кислот

Только с чисто формальных позиций можно рассматривать карбоксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью изменяет их свойства.

Обычная для карбонила поляризация двойной связи С=0 сильно возрастает за счет дополнительного стягивания свобод­ной электронной пары с соседнего атома кислорода гидроксильной группы:

Следствием этого является значительное ослабление связи О-Н в гидроксиле и легкость отщепления атома водорода от него в виде протона (Н +). Появление пониженной электронной плотности (δ+) на центральном углеродном атоме карбоксила приводит также к стягиванию σ-электронов соседней связи С-С к карбоксильной группе и появлению (как у альдегидов и кетонов) пониженной электронной плотности (δ +) на α-углеродном атоме кислоты.

Все карбоновые кислоты обладают кислой реакцией (обна­руживается индикаторами) и образуют соли с гидроксидами, оксидами и карбонатами металлов и с активными метал­лами:

Карбоновые кислоты в большинстве случаев в водном растворе диссоциированы лишь в малой степени и являются слабыми кислотами, значительно уступая таким кислотам, как соляная, азотная и серная. Так, при растворении одного моля в 16 л воды степень диссоциации муравьиной кислоты равна 0,06, уксусной кислоты - 0,0167, в то время как соля­ная кислота при таком разбавлении диссоциирована почти полностью.

Для большинства одноосновных карбоновых кислот рК а = 4,8, только муравьиная кислота имеет меньшую величи­ну рК а (около 3,7), что объясняется отсутствием электронодонорного эффекта алкильных групп.

В безводных минеральных кислотах карбоновые кислоты протонируются по кислороду с образованием карбкатионов:

Сдвиг электронной плотности в молекуле недиссоцииро­ванной карбоновой кислоты, о котором говорилось выше, по­нижает электронную плотность на гидроксильном атоме кис­лорода и повышает ее на карбонильном. Этот сдвиг еще боль­ше увеличивается в анионе кислоты:

Результатом сдвига является полное выравнивание заря­дов в анионе, который фактически существует в форме А - резонанс карбоксилат-аниона.

Первые четыре представителя ряда карбоновых кислот - подвижные жидкости, смешивающиеся с водой во всех отно­шениях. Кислоты, в молекуле которых содержится от пяти до девяти атомов углерода (а также изомасляная кислота), - маслянистые жидкости, растворимость их в воде невелика.

Высшие кислоты (от С 10) - твердые тела, практически не­растворимы в воде, при перегонке в обычных условиях они разлагаются.

Муравьиная, уксусная и пропионовая кислоты имеют ост­рый запах; средние члены ряда обладают неприятным запа­хом, высшие кислоты запаха не имеют.

На физических свойствах карбоновых кислот сказывается значительная степень ассоциации вследствие образования во­дородных связей. Кислоты образуют прочные водород­ные связи, так как связи О-Н в них сильно поляризованы. Кроме того, карбоновые кислоты спо­собны образовывать водородные связи с участием атома кисло­рода карбонильного диполя, обладающего значительной электроотрицательностью. Действительно, в твердом и жидком со­стоянии карбоновые кислоты существуют в основном в виде циклических димеров:

Такие димерные структуры сохраняются в некоторой степе­ни даже в газообразном состоянии и в разбавленных растворах в неполярных растворителях.

Карбоновые кислоты - органические кислоты. Они входят в состав живых организмов и участвуют в метаболизме. Химические свойства карбоновых кислот обуславливаются наличием карбоксильной группы -СООН. К ним относятся уксусная, муравьиная, щавелевая, масляная и ряд других кислот.

Общее описание

Существует несколько способов получения карбоновых кислот:

  • окисление спиртов - C 2 H 5 OH + O2 → CH 3 COOH + H 2 O (из этанола образуется уксусная кислота);
  • окисление альдегидов - CH 3 COH + [O] → CH 3 COOH;
  • окисление бутана - 2C 4 H 10 + 5O 2 → 4CH 3 COOH + 2H 2 O;
  • карбонилирование спирта - CH 3 + CO → CH 3 COOH;
  • разложение щавелевой кислоты для получения муравьиной кислоты - C 2 H 2 O 4 → HCOOH + CO 2 ;
  • взаимодействие солей с концентрированной серной кислотой - CH 3 COONa + H 2 SO 4 → CH 3 COOH + NaHSO 4 .

Рис. 1. Способы получения карбоновых кислот.

Физические свойства карбоновых кислот:

  • температура кипения выше, чем у соответствующих углеводородов и спиртов;
  • хорошая растворимость в воде - растворяются на катионы водорода и анионы кислотного остатка (являются слабыми электролитами);
  • увеличение числа атомов углерода уменьшает силу кислот.

Карбоновые кислоты имеют прочные водородные связи (прочнее, чем у спиртов), что обуславливается высоким положительным зарядом на атоме водорода в карбоксильной группе.

Взаимодействие

Карбоновые кислоты изменяют окраску индикаторов. Лакмус и метилоранж становятся красными.

Рис. 2. Взаимодействие с индикаторами.

В таблице химических свойств карбоновых кислот описано взаимодействие кислот с другими веществами.

Реакции

Результат

Пример

С металлами

Выделяется водород, образуются соли

2CH 3 COOH + Mg → (CH 3 COO) 2 Mg + H 2

С оксидами

Образуются соль и вода

2CH 3 COOH + ZnO → (CH 3 COO) 2 Zn + H 2 O

С основаниями (нейтрализация)

Образуются соль и вода

CH 3 COOH + NaOH → CH 3 COONa + H 2 O

С карбонатами

Выделяются углекислый газ и вода

2CH 3 COOH + CaCO 3 → (CH 3 COO) 2 Ca + H 2 O + CO 2

С солями слабых кислот

Образуется неорганическая кислота

2CH 3 COOH + Na 2 SiO 3 → 2CH 3 COONa + H 2 SiO 3

С аммиаком или гидроксидом аммония

Образуется ацетат аммония. При взаимодействии с гидроксидом выделяется вода

CH 3 COOH + NH 3 → CH 3 COONH 4

CH 3 COOH + NH 4 OH → CH 3 COONH 4 + H 2 O

Со спиртами (этерификация)

Образуются сложные эфиры

CH 3 COOH + C 2 H 5 OH → CH 3 COOC 2 H 5 + H 2 O

Галогенирование

Образуется соль

CH 3 COOH + Br 2 → CH 2 BrCOOH

Соли, образующиеся при взаимодействии веществ с муравьиной кислотой, называются формиатами, с уксусной кислотой - ацетатами.

Декарбоксилирование

Отщепление карбоксильной группы называется процессом декарбоксилирования, который происходит в следующих случаях:

  • при нагревании солей в присутствии твёрдых щелочей с образованием алканов - RCOONa тв + NaOH тв → RH + Na 2 CO 3 ;
  • при нагревании твёрдых солей - (СН 3 СОО) 2 Са → СН 3 -СО-СН 3 + СаСО 3 ;
  • при прокаливании бензойной кислоты - Ph-COOH → PhH + CO 2 ;
  • при электролизе растворов солей - 2RCOONa + Н 2 О → R-R + 2CO 2 + 2NaOH.
. Всего получено оценок: 110.

13.1.1. Окисление углеводородов . Существует два способа: окисление низших алканов C 4 -C 8 преимущественно до уксусной кислоты и окисление твердого парафина с образованием синтетических жирных кислот (СЖК) с прямой цепью углеродных атомов С 10 -С 20 , являющихся сырьем для синтеза ПАВ (поверхностно-активных веществ).

Процесс протекает в жидкой фазе при нагревании или в присутствии катализаторов. При окислении алканов происходит деструкция по связям между вторичными углеродными атомами, поэтому из н-бутана образуется главным образом уксусная кислота, а в качестве побочных продуктов – метилэтилкетон и этилацетат.

13.1.2.Синтезы на основе оксида углерода (II). Карбоновые кислоты получают на основе оксида углерода реакцией карбонилирования:

Присоединение по двойной связи при кислотном катализе всегда протекает по правилу Марковникова, вследствие этого только из этилена получается неразветвленная кислота, а из его гомологов - α-метилзамещенные кислоты. Особый интерес данный метод представляет для синтеза кислот с третичным радикалом (неокислот) из разветвленных олефинов (реакция Коха):

Механизм реакции состоит в предварительном протонировании алкена кислотой с образованием иона карбения, его взаимодействия с СО с получением ацилий – катиона и реакции последнего с водой с образованием карбоновой кислоты:

Неокислоты и их соли обладают очень высокой растворимостью и вязкостью, а их сложные эфиры - стабильностью к гидролизу, что обеспечивает им широкое применение в ряде отраслей.

Карбонилирование спиртов катализируется комплексами металлов (Ni, Со, Fe, Pd). Процесс реализован в промышленности для синтеза уксусной кислоты из метанола и характеризуется высокими экономическими показателями.



Кислоты также получают окислением альдегидов (продукт оксосинтеза).

Лабораторные способы получения карбоновых кислот

Окисление алканов.

Окисление алкенов.

13.2.3. Окисление первичных спиртов .

13.2.4. Окисление альдегидов и кетонов . Альдегиды окисляются значительно легче, чем кетоны. Кроме того, окисление альдегидов приводит к образованию кислот с тем же числом углеродных атомов, в то время как окисление кетонов протекает с разрывом углерод – углеродных связей (образуются две кислоты или кислота и кетон):

Окислителями служат перманганат или бихромат калия. Окисление кетонов требует более жестких условий, чем альдегидов.

13.2.5. Гидролиз нитрилов. Нитрилы получают взаимодействием галогеналканов с цианистым калием, проводят гидролиз водными растворами кислот или щелочей. В кислой среде азот выделяется в виде соли аммония:

в щелочной - в виде гидроксида аммония, который разлагается с выделением аммиака, кислота же получается в виде соли:

13.2.6. Синтез Гриньяра. При взаимодействии магнийорганических соединений с диоксидом углерода образуются соли карбоновых кислот:

Под действием сильной кислоты (обычно НСl) соль превращается в кислоту:

Гидролиз жиров

Жиры - сложные эфиры карбоновых кислот и глицерина (триглицериды). Карбоновые кислоты, входящие в состав жиров имеют углеродную цепь от 3 до 18 углеродных атомов.

Кипячение жиров или масел с водными растворами щелочей (NaOH, КОН) приводит к получению солей карбоновых кислот и глицерина.

Эта операция называется омылением, так как соли карбоновых кислот используют для изготовления мыла.

Гидролиз производных карбоновых кислот.

Физические свойства

Низшие кислоты с числом атомов углерода до 3 – легколетучие бесцветные жидкости с характерным острым запахом, смешиваются с водой в любых соотношениях. Большинство кислот С 4 – С 9 – маслянистые жидкости с неприятным запахом. Растворимость в воде сильно уменьшается с ростом молярной массы. Кислоты от С 10 и выше – твердые вещества, нерастворимые в воде. Плотности муравьиной и уксусной кислот больше единицы, остальных – меньше единицы. Температура кипения возрастает с увеличением молярной массы, при одном и том же числе углеродных атомов кислоты нормального строения кипят выше, чем кислоты с разветвленным углеродным скелетом. Сравнение температур кипения кислот и спиртов с одинаковым числом углеродных атомов показало, что кислоты кипят при значительно более высоких температурах, чем спирты. Это свидетельствует о более высокой ассоциации молекул кислот по сравнению со спиртами за счет образования водородных связей.

Карбоновые кислоты, как и спирты, способны образовывать водородные связи. Если акцептором является достаточно сильное основание, образование водородной связи предшествует полному переносу протона к основанию. По Бренстеду, соединение, являющееся донором водорода, считают «кислотой». Будет ли данное соединение «донором водорода» («кислотой»), зависит от природы «акцептора водорода» («основания»). Чем сильнее основание, тем больше вероятность того, что данное соединение будет вести себя по отношению к нему как кислота:

Межмолекулярные водородные связи, возникающие между молекулами карбоновых кислот, настолько прочны, что даже в газообразном состоянии значительная часть молекул существует в виде димеров:

С ростом углеводородной цепи способность кислот к образованию водородных связей уменьшается.

Химические соединения, которые состоят в том числе и из карбоксильной группы COOH, получили от ученых название карбоновые кислоты. Существует большое количество наименований этих соединений. Они классифицируются по разным параметрам, например, по количеству функциональных групп, наличию ароматического кольца и так далее.

Строение карбоновых кислот

Как уже упоминалось, для того чтобы кислота была карбоновой, она должна иметь карбоксильную группу, которая, в свою очередь, имеет две функциональные части: гидроксил и карбонил. Их взаимодействие обеспечивается ее функциональным сочетанием одного атома углерода с двумя кислородными. Химические свойства карбоновых кислот зависят от того, какое строение имеет эта группа.

За счет карбоксильной группы эти органические соединения можно называть кислотами. Их свойства обуславливаются повышенной способностью иона водорода H+ притягиваться к кислороду, дополнительно поляризуя связь O-H. Также благодаря этому свойству органические кислоты способны диссоциировать в водных растворах. Способность к растворению уменьшается обратно пропорционально росту молекулярной массы кислоты.

Разновидности карбоновых кислот

Химики выделяют несколько групп органических кислот.

Моноосновные карбоновые кислоты состоят из углеродного скелета и только одной функциональной карбоксильной группы. Каждый школьник знает химические свойства карбоновых кислот. 10 класс учебной программы по химии включает в себя непосредственно изучение свойств одноосновных кислот. Двухосновные и многоосновные кислоты имеют в своей структуре две и более карбоксильных групп соответственно.

Также по наличию или отсутствию двойных и тройных связей в молекуле бывают ненасыщенные и насыщенные карбоновые кислоты. Химические свойства и их отличия будут рассмотрены ниже.

Если органическая кислота имеет в составе радикала замещенный атом, то в ее название включается наименование группы-заместителя. Так, если атом водорода замещен галогеном, то в названии кислоты будет присутствовать наименование галогена. Такие же изменения претерпит наименование, если произойдет замещение на альдегидную, гидроксильную или аминогруппы.

Изомерия органических карбоновых кислот

В основе получения мыла лежит реакция синтеза сложных эфиров вышеперечисленных кислот с калиевой или натриевой солью.

Способы получения карбоновых кислот

Способов и методов получения кислот с группой COOH существует множество, но наиболее часто применяются следующие:

  1. Выделение из природных веществ (жиров и прочего).
  2. Окисление моноспиртов или соединений с COH-группой (альдегидов): ROH (RCOH) [O] R-COOH.
  3. Гидролиз тригалогеналканов в щелочи с промежуточным получением моноспирта: RCl3 +NaOH=(ROH+3NaCl)=RCOOH+H2O.
  4. Омыление или гидролиз эфиров кислоты и спирта (сложных эфиров): R−COOR"+NaOH=(R−COONa+R"OH)=R−COOH+NaCl.
  5. Окисление алканов перманганатом (жесткое окисление): R=CH2 [O], (KMnO4) RCOOH.

Значение карбоновых кислот для человека и промышленности

Химические свойства карбоновых кислот имеют большое значение для жизнедеятельности человека. Они чрезвычайно необходимы для организма, так как в большом количестве содержатся в каждой клетке. Метаболизм жиров, белков и углеводов всегда проходит через стадию, на которой получается та или иная карбоновая кислота.

Кроме того, карбоновые кислоты используют при создании лекарственных препаратов. Ни одна фармацевтическая промышленность не может существовать без применения на деле свойств органических кислот.

Немаловажную роль соединения с карбоксильной группой играют и в косметической промышленности. Синтез жира для последующего изготовления мыла, моющих средств и бытовой химии основан на реакции этерификации с карбоновой кислотой.

Химические свойства карбоновых кислот находят отражение в жизнедеятельности человека. Они имеют большое значение для человеческого организма, так как в большом количестве содержатся в каждой клетке. Метаболизм жиров, белков и углеводов всегда проходит через стадию, на которой получается та или иная карбоновая кислота.

Понравилось? Лайкни нас на Facebook