Космические методы исследования земли. Космическая геология

С

игнал «бип-бип...» первого советского спутника 4 октября 1957 г. возвестил о начале новой, космической эры в истории человечества. А спустя почти четыре года, 12 апреля 1961 г. Юрий Алексеевич Гагарин совершил первый полет человека в космос, взглянув на Землю со стороны, и стал зачинателем ее изучения с орбиты. 6 и 7 августа того же года Герман Степанович Титов , 17 раз обогнув планету, сделал несколько снимков ее поверхности, - с этого началась планомерная космическая фотосъемка.

С тех пор количество дистанционных наблюдений растет лавинообразно; появились разнообразные фотографические и нефотографические системы, в том числе многозональные фотокамеры, телевизионные камеры со специальной передающей электронно-лучевой трубкой (видиконом), инфракрасные сканирующие радиометры,Сканирующей называется аппаратура, обеспечивающая получение изображений в видимой или инфракрасной областях электромагнитного спектра путем последовательного построчного прослеживания участка местности. микроволновые радиометры для радиотепловой съемки, различные радары для активного зондирования (т. е. посылающие сигналы и регистрирующие их отражение от поверхности Земли). Значительно возросло и количество космических летательных аппаратов - искусственные спутники, орбитальные станции и пилотируемые корабли. Передаваемая ими обширная и разнообразная информация используется в ряде отраслей знания, включая такие науки о Земле, как геоморфология и геология, океанология и гидрография. В результате возникло новое научное направление - космическое землеведение, изучающее закономерности состава и строения геосферы, в частности рельеф и гидрографию суши, акватории океанов и морей.

Информация о любом уголке Земли, получаемая с помощью космических методов землеведения, характеризуется уникальностью, обзорностью и относительной дешевизной на единицу исследуемой площади, большой достоверностью и оперативностью, может повторяться с требуемой периодичностью или быть практически непрерывной. Космические методы позволяют выявить частоту нахождения, ритмичность и силу природных процессов глобального, зонального, регионального и локального характера. С их помощью удается исследовать взаимосвязь всех составных частей геосферы и создавать карты слабо изученных в топографическом отношении субтропических и тропических областей. Наконец, эти методы дают возможность в короткие сроки получить снимки огромных территорий и выявить единство пространственно разобщенных крупных элементов рельефа - гигантских кольцевых и линейных структур. Ранее существование некоторых лишь предполагалось, в лучшем случае недооценивалось, многие же совершенно не были известны. Ныне уже ни у кого не вызывает сомнений, что они имеют самостоятельное значение и определяют основные черты строения земной поверхности.

Космос - картографам

Д

о последнего времени мелкомасштабные физические карты мира, континентов, отдельных государств или крупных регионов создавались путем сведения и преобразования материалов топокарт крупных и средних масштабов, основанных на данных аэросъемочных и наземных топографо-геодезических работ. Такое обобщение контуров зависит от действующих инструкций и приемов картосоставления, а также от ряда чисто субъективных факторов. Благодаря региональным и глобальным космическим снимкам автоматически удалось получить новые объективные физические карты и сопоставить эти реальные изображения лика планеты со старыми сводными. Оказалось, что они не схожи: на прежних отсутствуют не только кольцевые структуры и линеаменты, что мы уже отмечали, но и следы движения ледников, границы ландшафтных зон, ряд вулканов, звездчатые структуры, русла древних рек и высохшие озера.

Так, например, взгляд из космоса выявил неизвестные ранее вулканы в Южной Аравии и Западной Сахаре, в Мексике и на юго-западе США, а также под льдами Земли Элсуорта, у 80° ю. ш. (Антарктида). «С неба» были открыты древние вулканические постройки в Охотско-Чукотском регионе и газообразные выбросы над о. Беннетта (северная часть Восточно-Сибирского моря), зафиксированные четырежды на протяжении 1983–1984 гг.; направленная туда экспедиция обнаружила подводный вулкан.

На космических снимках некоторых районов Скандинавского п-ова и Малой Азии, северо-запада Ирана и Канады, запада США и на востоке Австралии удалось выявить новую форму - звездчатые структуры. По внешнему виду они похожи на трещины в стекле, пробитом пулей. Они установлены также в других областях, например на востоке Западно-Сибирской равнины и в среднем течении Подкаменной Тунгуски, но имеют менее четкие очертания.

Космические снимки позволяют получить объективную информацию об исчезнувшей в наше время гидрографической сети и высохших водоемах. По «небесным» данным на карты нанесены древние долины и дельты Сырдарьи и Амударьи, прежние русла Зеравшана и ряда притоков Амазонки, а также очертания значительных озер, занимавших некогда замкнутые котловины в Восточном Казахстане, Северо-Западном Китае и Южной Монголии. Например, размерами поспорить с Аралом могло подковообразное Джунгарское море: его реликты разбросаны на обширной территории - это Зайсан, Улюнгур, Эби-Нур и ряд мелких джунгарских водоемов. Другим, менее значительным, было Хами-Турфанское озеро, вытянувшееся по параллели на 500 км; оно заполняло обе эти впадины и пространство между ними. Следы древнего озера открыты из космоса и в Западной Сибири, в северной части Кондинской низины, близ 60° с. ш. Оно имело форму вытянутого в широтном направлении овала (300х100 км), что подтвердили полевые исследования.

Наконец, благодаря космической информации уточнены контуры Аральского моря, залива Кара-Богаз-Гол, ряда современных озер в Передней Азии (в частности, Зерайе) и в Южном Тибете (Нгангларинг и Тарок); там же открыты небольшие высокогорные водоемы.

Открытие кольцевых структур

Н

а поверхности Земли давно были известны округлые или овальные тела - вулканы, кальдеры, трубки взрыва, метеоритные воронки, массивы. Но их количество и размеры, не превышавшие первых десятков километров, не производили впечатления. Правда, геологи и географы еще в XIX в. описали довольно крупные образования округлых очертаний (например, Парижский бассейн), а в середине нашего века вихревые структуры подробно изучил китайский геолог Ли Сыгуан , в частности, в центре Малой Азии он выделил одну крупную структуру, а на северо-западе Китая - две. Позднее ряд советских геологов, применив обычные («земные») методы исследований, описали несколько значительных кольцевых форм на Украине и в Казахстане, на Дальнем Востоке и Чукотке.

Однако до начала космической эпохи такие образования считались исключением, хотя уже было доказано, что с ними связаны месторождения металлов, включая золото и серебро. Дешифрирование космических снимков (т. е. выявление круговых или овальных форм, созданных дугообразным или концентрическим строением рельефа, берегов морей и озер, гидросети или растительного покрова, а также круговыми аномалиями рисунка и тональности изображения) сразу же изменило представление о распространенности и габаритах образований, названных кольцевыми структурами. Выяснилось, что вся поверхность суши нашей планеты буквально испещрена «оспинами» и «буграми», имеющими в поперечнике в основном 100–150 км; встречаются и огромные - диаметром в сотни и даже тысячи километров; мелкие (30–50 км), количество которых просто не поддается учету, практически всегда «вложены» в более крупные. Из многообразия известных ныне типов кольцевых структур особенно широко представлены купольные и купольно-кольцевые, т. е. положительные формы рельефа.

Особняком стоят гигантские кольцевые структуры, точнее овоидно-кольцевые системы сложного строения, впервые выявленные геологом Маратом Зиновьевичем Глуховским в 1978 г. по результатам геолого-морфологического анализа. Они получили название нуклеаров и отчетливо проступают на космических снимках всех континентов Земли, за исключением Антарктиды; поперечник некоторых достигает почти 4 тыс. км.

Кольцевые структуры Европы

Н

а Европейском материке М. Глуховский выделил Свеконорвежский (900 км),Здесь и далее в скобках приводятся размеры по максимальной оси. Свекофеннокарельский (1300 км) и Кольско-Лапландский (550 км) нуклеары. Они приурочены к Скандинавскому п-ову и отдешифрированы по космическим снимкам. Прибалтийский (500 км), установленный им же по геолого-геофизическим данным и «с неба», занимает большую часть акватории Балтики. Скифский и Сарматский гиганты, с поперечником 1 тыс. км каждый, выявленные советским геологом Вильямом Артуровичем Бушем по геолого-морфологическим материалам, расположены в Европейской части СССР.

Кроме перечисленных нуклеаров, в пределах континента В. Буш выделяет ряд крупных поднятий; к ним относятся Орденеское (около 600 км) на северо-западе Пиренейского п-ова с четырьмя довольно значительными сателлитами; Чешское (около 400 км), включающее Рудные горы, Чешский Лес, Шумаву и Судеты; Паннонское (более 500 км), осложненное несколькими положительными и отрицательными структурами. На территории нашей страны он же отдешифрировал три овала диаметром от 300 до 400 км (с севера на юг) - Онежский, Молодечненский и Волынский и пять куполов (около 300 км в поперечнике) - Архангельский, Ленинградский, Тихвинский, Рыбинский и Горьковский.

Из отрицательных структур заслуживают упоминания близкие по размерам (200–260 км) Сегурская (юг Испании), Лигуро-Пьемонтская (север Италии) и Парижская, а также более крупная Будапештская (до 400 км) и самая значительная (около 450 км) Мезенская. Южнее ее располагаются две структуры неясного генезиса - Сухонская и Вычегодская (обе до 400 км в поперечнике). В контурах этих крупных образований, а также вне их обнаружены многочисленные формы, диаметры которых обычно меньше 100 км.

Кольцевые структуры Азиатской части СССР

В

пределах Сибири и Дальнего Востока советские геологи отмечают значительное количество кольцевых структур различного «формата». Так, Владимир Васильевич Соловьев , в начале 70-х гг. проведя геолого-морфологический анализ, впервые выделил гигантскую Обскую (1500 км) структуру, захватывающую междуречье нижней Оби и Енисея. Как установлено позднее при дешифровании космических снимков, она является нуклеаром и по периферии осложнена значительно уступающими ей многочисленными образованиями, диаметр которых колеблется от 250 до 400 км. Из них отметим Ханты-Мансийскую и Вартовскую (около 400 км), имеющие концентрическое строение, причем их внешний контур проявляется менее четко, чем внутренний. Восточнее расположен Хета-Оленекский нуклеар (1100 км), занимающий центр и север Среднесибирского плоскогорья; он отдешифрирован по космическим снимкам М. Глуховским. В пределах этой структуры находятся поднятия типа Путорана (300 км) и Анабарского (230 км), выделенные В. Соловьевым, и ряд более мелких.

Южнее, в бассейне Ангары, по геолого-морфологическим материалам В. Соловьев откартировал еще одну крупную форму - Ангарскую (900 км). Он же в бассейне Алдана при анализе топографических карт описал гигантскую морфоструктуру центрального типа, позже получившую название Алдано-Становой (1300 км). В междуречье Вилюя и Лены в 1978 г. М. Глуховский по космическим снимкам выявил Вилюйскую структуру (750 км) с центральным овалом и системой дуг все более увеличивающегося радиуса. Позднее установлено, что все три образования следует причислить к нуклеарам. Контуры еще одного нуклеара - Амурского (1400 км), включающего ряд структур-сателлитов, намечены в основном по космическим снимкам.

Вне пределов перечисленных гигантов обнаружено множество овалов, большей частью приуроченных к северо-востоку материка. Крупнейший из них - « Верхнеиндигирский (500х350 км) с четко вырисовывающимся ядром; Омолонский (400х300 км), открытый В. Соловьевым, имеет концентрическое вихревое строение. Следует отметить и крупную, почти изометричную (500 км) Верхнеянскую структуру, выделенную по морфологическим и геологическим признакам.

Количество куполовидных или кольцевых поднятий диаметром до 200 км, отдешифрированных на обширных пространствах Северо-Востока, составляет несколько сотен. Они четко выражены в рельефе и располагаются в центральных частях или на периферии более значительных образований. Кольцевые структуры до 60 км в поперечнике исчисляются многими сотнями; обычно они круглой формы, реже имеют овальные контуры.

Анализ космических снимков Казахстана и Средней Азии выявил широкое распространение аналогичных образований размером от десятков до нескольких сотен километров. Из складчатых овалов отметим Кокчетавский (около 600 км), ядро которого впервые обнаружено Гюльсем Зигановной Поповой в начале 60-х гг. по геолого-морфологическим признакам; позднее он описан В. Соловьевым. Среди поднятий заслуживают упоминания полукольцевая структура в Каракумах, Северо-Тяньшаньская (350 км), охватывающая наиболее высокогорную часть хребтов Кюнгёй- и Терскей-Ала-Тоо, а также Памирская (около 600 км), частично находящаяся в пределах зарубежной Азии. К отрицательным структурам относятся Северокаспийская (900х600 км) и менее крупные Южнокаспийская и Южноприбалхашская (до 400 км).

Кольцевые структуры зарубежной Азии

Н

а территории зарубежной Азии В. Буш оконтурил восемь нуклеаров. Из них половина - «чисто» азиатских, расположенных на востоке материка: три (Синокорейский, Северокитайский и Индокитайский) имеют поперечник 600–800 км, а Южнокитайский крупнее - 1200 км. Они выявлены по геолого-геофизическим и геолого-морфологическим данным. Остальные представляют собой лишь обломки гигантских нуклеаров, разорванных при распадении материка Гондваны. Аравалийский является азиатской частью Сомалийско-Аравалийского, включающего также два осколка - п-ов Сомали и север Мадагаскара; Аравийско-Нубийский состоит из двух частей, меньшая расположена в Азии. К Дарваро-Мозамбикско-Пилбарскому нуклеару относится только юг п-ова Индостан, а к Индо-Австралийскому - участок, примыкающий к Бенгальскому заливу.

Кольцевые структуры меньшего размера, как и на других материках, накладываются друг на друга и пересекаются. Они характеризуются в основном почти округлой или овальной формой либо имеют незамкнутые контуры. Помимо овала в уже упоминавшемся Памирском поднятии, аналогичные образования дешифрированы в Южном Китае, в междуречье Ганга и Маханади, на севере и юго-востоке п-ова Индостан (Мадрасский овал, более 500 км), а также в Малой Азии (Киршехирский овал, 250 км).

К самым большим поднятиям континента В. Буш относит Хангай-Хэнтойское (до 1000 км) с незамкнутыми контурами. Более скромные по размерам образования того же типа: Шэньсийское (250 км) в Китае, Хамаданское (400 км), отвечающее наиболее приподнятым участкам горной системы Загроса, а также Диярбакырское (350 км), в междуречье верхнего Тигра и Евфрата.

Среди отрицательных структур выделяются три довольно значительные: Сирийская (750 км), Гильмендская (600 км) и Лхасская (500х250 км), полуовальной формы с извилистыми границами. Кроме них, выявлено несколько менее крупных в Малой Азии, Гоби, Монголии и на Аравийском п-ове.

Мелкие образования, представленные куполами или телами гранитных массивов диаметром менее 150 км, по подсчетам В. Буша, составляют более трех четвертей всех оконтуренных кольцевых структур Азии. Они уверенно выявляются во многих регионах материка, в частности на п-ове Индостан.

Кольцевые структуры Африки

В

пределах Африканского континента советский геолог Евгений Дмитриевич Сулиди-Кондратьев в 1983 г. впервые выделил различные по размерам и происхождению кольцевые образования. К крупнейшим относятся семь нуклеаров: Западноафриканский, имеющий форму овала (3600х3000 км), Аравийско-Нубийский (2200 км), захватывающий часть территории Аравии; Центральноафриканский (2800 км), занимающий почти весь бассейн р. Конго; ТанзанийскийПриоритет в выделении этой гигантской структуры принадлежит советскому геологу Олегу Борисовичу Гинтову (1978), проанализировавшему геолого-морфологические материалы. (1400х850 км); Сомалийско-Аравалийский (1700 км) - примерно половина его находится в Индостане; Южноафриканский (2400 км); Дарваро-Мозамбикско-Пилбарский (1500 км), разорванный на четыре «куска», разместившихся на трех материках (Африка, Азия и Австралия), а также на о. Мадагаскар.

Кроме перечисленных гигантов, на Африканском континенте установлено множество положительных кольцевых структур меньшего диаметра, отнесенных к типу складчатых овалов. Из них самый значительный Габонский (1100 км), внутри которого размещаются два крупных купола - Северо-Габонский (около 500 км) и Шайю (300–350 км). Ахаггарский овал, имеющий поперечник более 1000 км, содержит пять куполов-сателлитов диаметром 300–400 км каждый. Немного уступает ему Северо-Суданский (около 1000 км по большой оси). В Западной Африке, близ атлантического побережья, выявлены три овала поменьше, в том числе Леоно-Либерийский, с нечетко проявляющимся концентрическим строением. В Центральной и Южной Африке отдешифрировано четыре структуры таких же размеров, включая описанный О. Гинтовым овал Зимбабве (с тремя сателлитами диаметром 300 км каждый) и Трансваальский с центральной впадиной.

Структуры типа куполов отдешифрированы не только в контурах овалов, но и за их пределами: на юге материка отмечаются два таких самостоятельных образования: Намаква (250 км) и Капский (200 км). Подавляющее большинство имеет поперечник менее 100 км; купола диаметром от нескольких километров до 20 км в основном соответствуют мелким массивам или вулканам - например Килиманджаро.

К наиболее крупным отрицательным кольцевым структурам относятся Таудени, Конго и Чадская - диаметр любой из них составляет около 1000 км. Менее значительные (450–650 км) впадины приурочены в основном к Северной Африке - Куфра, Алжиро-Ливийская и две к югу от Сахарского Атласа. Приблизительно таких же размеров депрессии выявлены на западе и юге материка, в том числе Калахари (до 600 км в поперечнике).

Кольцевые структуры Северной Америки

А

мериканский геолог Джон Сол в 1978 г. описал самую грандиозную кольцевую структуру Земли - Североамериканскую (3700–3800 км), центр которой приходится на Гудзонов залив. В 1982 г. советский геолог Наталья Валентиновна Макарова отнесла ее к разряду нуклеаров.

В пределах этого гиганта Н. Макарова, кроме «наземных» материалов используя космические снимки, отдешифрировала множество кольцевых.структур-сателлитов различных типов и размеров. Отметим отчетливо выраженный в рельефе овал Слейв (более 500 км), расположенный между Большим Медвежьим и Большим Невольничьим озерами; овал Дубонт (около 350 км), выделенный по рельефу вокруг одноименного озера. Южнее намечены контуры двух крупных (400–500 км) форм - Атабасской и Виннипегской. К п-ову Лабрадор приурочено несколько образований: поднятия Центрально-Лабрадорское (750х550 км) и Унгава (около 500 км), а также две полукольцевые депрессии. Значительная (450 км) структура Уэйджер (по бухте того же названия) расположена у Северного полярного круга; ее северная часть низменная, а южная несколько приподнята. Большое количество куполов и депрессий от 50 до 400 км выделено между овалами и в их контурах; некоторые, наиболее отчетливо выраженные, были отмечены ранее американскими геологами, например горы Адирондак куполовидной формы, восточнее озера Онтарио.

На севере и юге материка Н. Макарова отдешифрировала еще два нуклеара. Северный (1500 км) охватывает весь Канадский Арктический архипелаг, за исключением трех четвертей Баффиновой Земли. В его пределах предположительно оконтурено несколько кольцевых структур, в основном соответствующих островам (например, Виктория, Элсмир) либо полузамкнутым акваториям типа бассейнов Фокс или Кейна. Основная площадь южного, Мексиканского нуклеара (1700–1800 км) приходится на одноименный залив; периферия структуры представлена сравнительно узкой полосой побережья от Флориды до Юкатана.

Колорадский нуклеар (1500х1300 км) на западе окаймлен береговыми хребтами, на востоке Скалистыми горами; центральная его часть является огромным сводом с просевшим ядром и дешифрируется как купол-сателлит, соответствующий Большому Бассейну; в его границах отмечено несколько сравнительно небольших (200–300 км) кольцевых образований.

Вне пределов нуклеаров Н. Макарова выявила ряд крупных форм; часть их хорошо выражена в рельефе, например Южноаляскинская (350 км), оконтуренная дугой Аляскинского хребта, Мичигано-Гуронская (500 км), имеющая почти безукоризненный контур. Другие проявляются лишь на космических снимках - к ним относятся Миссури-Иллинойсская (750 км), границами которой на юге и востоке служат давшие ей название притоки Миссисипи; Канзасская (600 км), на юге срезанная дуговыми нарушениями Уачитской полукольцевой структуры; Огайоская (около 500 км) с опущенной южной и приподнятой северной половинами. Два значительных поднятия отдешифрированы на мексиканской территории: Центральномексиканская (более 600 км), отличающаяся сложным строением, и кольцо Мехико (до 400 км).

Кольцевые структуры Южной Америки

А

нализируя рельеф материка по топокартам и используя, правда, в меньшей мере, чем по другим континентам, космические снимки, советский геолог Яков Григорьевич Кац выделил ряд значительных структур. В первую очередь укажем на гигантский Амазонский нуклеар (3200 км), в пределы которого вошла вся северо-западная часть Южной Америки. Небольшие «обрывки» двух других, тяготеющие к атлантическому побережью, являются частями упомянутых ранее Центральноафриканского и Южноафриканского нуклеаров. Гвианское поднятие (1000–1200 км) отвечает одноименному плоскогорью, хорошо выраженному в рельефе и имеющему концентрическое строение.

К аналогичным, но менее крупным положительным образованиям отнесены Пираньяс (550 км) и Ресифи (500 км), приуроченные к восточному выступу материка. Далеко на юге, близ атлантического побережья, выделены еще два кольцевых поднятия - Уругвайское (600 км) и Буэнос-Айресское (450 км).

Четыре отрицательные кольцевые структуры диаметром от 300 до 550 км каждая отмечены в бассейне Амазонки, в том числе три - в ее долине. Восточнее низовьев этой реки расположена еще одна впадина - Мараньян (более 800 км), а к югу от нее другая - в верховьях р. Сан-Франсиску.

В системе Анд установлен ряд незначительных (10–50 км) форм, соответствующих либо вулканическим постройкам, либо мелким массивам.

Кольцевые структуры Австралии

В

первые кольцевые структуры материка установил советский геолог Анатолий Михайлович Никишин . В рельефе Северо-Западной Австралии четко вырисовывается поднятие, кольцевая форма которого хорошо очерчивается долинами пересыхающих рек Ашбертон и Де-Грей. Этот Пилбарский нуклеар всего лишь часть уже упоминавшегося нами Дарваро-Мозамбикско-Пилбарского. Он имеет четкое концентрическое строение благодаря нескольким «вложенным» овалам, а на юго-востоке осложнен кольцевой структурой Дисаппоинтмент (350 км).

На юго-западе континента выявлен нуклеар Ийлгарн, имеющий яйцевидный контур (1200х800 км). В его пределах обозначены три овала размером 100–300 км по большой оси, включая Остин. Значительная часть самой крупной из австралийских структур такого типа - Индо-Австралийской (около 2400 км) отмечена на севере; примерно треть ее приходится на п-ов Индостан. В пределах этого нуклеара выделено шесть овалов, в том числе Кимберли (400–600 км), с юга ограниченный дугообразными хребтами Дьюрак и Кинг-Леопольд. К центру Южной Австралии приурочен нуклеар Гоулер (около 1200 км), практически не проявляющийся в рельефе. Он осложнен двумя овалами и сравнительно крупной впадиной с наложенной на нее кольцевой структурой диаметром 300 км.

Помимо овалов-сателлитов, на континенте А. Никишин отдешифрировал три самостоятельных образования этого же типа, имеющих поперечник 200–250 км, - два на западе и один на востоке; в рельефе четко вырисовывается лишь полуовал Кеннеди, оконтуренный дугообразными участками русел ряда коротких рек бассейна Индийского океана.

В восточной Австралии по геолого-морфологическим данным выделены две крупные отрицательные кольцевые структуры: Эроманга (800 км), соответствующая Большому Артезианскому Бассейну, рассеченная параллельными долинами нескольких рек, и впадина Муррей (600 км), расположенная южнее и лишь на севере и юге не охваченная возвышенностями. В сердце материка выявлена гигантская структура Масгрейв-Макдоннелл (900 км), ядром которой служат системы одноименных хребтов.

Открытие и изучение линеаментов

Н

а лике Земли - это давно отражено на ее физических картах - ясно видны гигантские прямые или слабо изогнутые линии: ровные контуры значительных по протяженности участков берега некоторых континентов и островов, водоразделов и горных систем, а также речных долин. Такие ориентированные в одном направлении контуры географических объектов американский геолог Уильям Хоббс в 1911 г. назвал линеаментами.Впрочем, еще в 1883 г. Александр Петрович Карпинский описал «зачаточный кряж» длиной 2300 км при максимальной ширине до 300 км, протягивающийся из Польши через Донбасс до Мангышлака. В 1892 г. французский геолог Марсель Бертран заложил основы учения о весьма протяженных линейных структурах, к которым тяготеют значительные формы рельефа, крупные нарушения земной коры, а также ровные побережья морей, проливов, заливов и т. д. Однако лишь в космическую эру они получили «права гражданства», более того - ныне с полным основанием считаются одной из главных особенностей структуры поверхности нашей планеты. На глобальных и региональных космических снимках, выполненных во все времена года и в разных зонах спектра, отчетливо дешифрируется огромное количество «штрихов», отсутствовавших на картах любого масштаба. При детальном изучении этих линий на локальных снимках вплоть до исследования их на местности («в поле») - выяснилось: их изображение складывается из хорошо выдержанных по простиранию границ ландшафтных зон, всевозможных уступов, цепочек озер и других понижений, линий дренажа поверхностных и подземных вод, ледниковых трогов, линий раздела различных типов почв или растительности. Протяженность наиболее крупных (глобальных) линеаментов достигает 25 тыс. км. ширина - первых сотен километров.

Линеаменты Европы и Азии

Д

о начала космической эпохи были выделены лишь единичные гигантские линеаментные зоны (открывших их ученых мы отметим ниже). Дешифрирование космических снимков и обработка геолого-геофизических материалов дали возможность группе советских геологов во главе с В. Бушем охарактеризовать сеть крупнейших - глобальных и трансконтинентальных - линеаментов, выделив среди них пять групп.

Меридиональные, по В. Бушу, образуют равномерную систему сближающихся от экватора к полюсу линейных структур, расположенных в 600–800 км одна от другой и не отклоняющихся более чем на 15° от меридионального направления. Широтные приурочены в основном к северо-востоку Азии и находятся на расстоянии 800–1000 км друг от друга. К диагональным линеаментам отнесены структуры северо-западного, северо-восточного и дугообразного простирания (представители двух последних групп встречаются сравнительно редко).

К 1983 г. меридиональных линеаментов, или линеаментных зон, длина которых колеблется от 3500 до 18 000 км, по В. Бушу, было выделено 14. Самая западная, открытая в 1925 г. немецким геологом Хансом Штилле и получившая его имя, протягивается от Тронхейма, в Норвегии, на юг через озеро Мьёса, вдоль западного побережья п-ова Ютландия и меридиональную долину р. Рейна, где она выражена особенно отчетливо. Далее к югу по долине р. Роны зона прослеживается через о-ва Корсика и Сардиния на Африканский континент. Протяженность европейского отрезка «линии Штилле» составляет более 3500 км.

Заслуга выделения глобальной линейной Урало-Оманской структуры принадлежит А. Карпинскому: в 1894 г. он описал меридиональные нарушения, проходящие вдоль Уральского хребта и продолжающиеся до низовьев Амударьи. Французский геолог Раймон Фюрон доказал, что они тянутся через Иран далеко к югу - до о. Мадагаскар. По В. Бушу, эта линеаментная зона в виде широкой (более 300 км) полосы прослеживается от Пай-Хоя примерно по меридиану 60° по Уралу, через Каракумы и Иранское нагорье. За Оманским заливом зона отклоняется к югу-западу и достигает западного побережья Мадагаскара; длина ее определена в 15 000 км.

Енисейско-Салуэнский линеамент проходит от Карского моря по долине р. Енисей через стык Алтая и Западного Саяна. Затем он следует в Центральной Азии приблизительно по меридиану 95° в. д. через верховья Янцзы и вдоль сближенных долин Иравади, Салуина и Меконга. В Индийском океане линеамент представлен подводным Восточно-Индийским хребтом; общая длина его 9000 км.

К глобальным структурам В. Буш относит Верхояно-Марианскую (длина 18 000 км). В Ледовитом океане к ней принадлежит подводный хребет Гаккеля, далее она фиксируется на Новосибирских о-вах и через Верхоянское сооружение и хребет Сетте-Дабан прослеживается по Сахалину, Хоккайдо и Хонсю. Южнее линеамент проходит по о-вам Бонин и Марианским и, обойдя с востока о. Новая Гвинея, достигает акватории между Австралией и Новой Зеландией.

К категории наиболее четко дешифрируемых линеаментов принадлежит Чаунско-Олюторский (7500 км). От Чаунской губы он протягивается через весь северо-восток Азии примерно вдоль 170° в. д. до Олюторского п-ова. Здесь линеамент «ныряет» под воду (хребет Ширшова) и далее, почти не меняя направления, фиксируется в виде подводного Императорского хребта.

Группа широтных лииеаментов но количеству (шесть) и длине (7000–9500 км) уступает меридиональным. Самый северный из «широтников» начинается близ Воркуты и, проходя по стыку Полярного Урала и Пай-Хоя, устанавливается на севере Западно-Сибирской равнины и уверенно дешифрируется на плато Путорана. Далее он оконтуривает с юга Анабарское плато, пересекает Верхоянский хребет, а восточнее фиксируется в рельефе в виде кряжа Полоусный и хребта Улахан-Сис. Затем линеамент выявляется на Чукотском п-ове и прослежен на Аляске в виде широтного хребта Брукс; длина его - 7500 км.

Корякско-Ухтинский линеамент (7500 км) начинается от низовья Северной Двины и, пересекая Урал, оконтуривает с севера Сибирские Увалы. Затем он «заставляет» течь широтным курсом Нижнюю Тунгуску и Вилюй, а далеко на востоке проявляется в структурах Корякского нагорья того же направления.

Охотско-Московский линеамент, европейский отрезок которого выявлен советским геологом Дмитрием Михайловичем Трофимовым , начинается у Куршской косы (южное побережье Балтийского моря). Восточнее эта протяженная (9500 км) структура отмечается на Восточно-Европейской равнине широтными отрезками течения Волги и Камы. Не проявляясь на Урале, она проходит по центральной части Западно-Сибирской равнины, «диктует» широтное направление долин Ангары и Алдана, а также северного берега Охотского моря.

Из семи линеаментов северо-западной группы мы охарактеризуем три. Рекорд протяженности (25 000 км) принадлежит ныне Баренцевоморско-Тайваньской структуре, состоящей, по В. Бушу, из ряда параллельных ветвей, кулисообразно сменяющих одна другую. Западная прослежена от Нордкапа до Тимана (этот отрезок выявил X. Штилле). Затем она диагонально пересекает Средний Урал, Центральный Казахстан, всю Центральную и Юго-Восточную Азию и затухает на о. Калимантан. Более отчетливо проявляется восточная ветвь этого линеамента: она отмечена в Печорской низменности и на Западно-Сибирской равнине, выявлена в западной части Гоби и пустыне Алашань. Затем она достигает о. Тайвань и продолжается по дну Тихого океана.

Красноморско-Боденский линеамент (9000 км) берет начало на о. Ирландия и, проходя по Европейскому материку через Вогезы к Боденскому озеру, упирается в дугу Альп, где не проявляется. Снова линеамент дешифрируется далее к юго-востоку, в бассейне Савы. Затем он переходит на западное побережье Малой Азии и протягивается вдоль Красного моря в Индийский океан, вероятно, до Сейшельских о-вов.

Эльбско-Загросская структура (10 000 км) возникает у южного берега Исландии, по Фарерско-Исландскому порогу пересекает Атлантику и, возможно. Северное море, появляясь на континенте у основания Ютландского п-ова. Далее линеамент идет вдоль долин Эльбы и Одры, режет Карпаты (здесь он фиксируется в виде четкой зоны разломов) и выходит к Черному морю в низовьях Дуная; этот европейский отрезок структуры выявил X. Штилле. В Малой Азии линеамент дешифрируется в восточной половине Понтийских гор, вдоль хребта Загрос достигает Аравийского моря и протягивается параллельно всему западному берегу п-ова Индостан.

К группе «северо-восточников» принадлежит пять структур длиной от 4500 до 10 000 км. Одна из них, Алтынтагско-Охотская (8500 км) начинается на южном побережье Аравии и в море, возможно, соответствует подводному хребту Меррея. Выйдя на Азиатский материк, она определяет простирание нижних течений Инда и Сатледжа. В Гималаях, дешифрируясь лишь участками, линеамент отмечается в Тибете и четко проявляется в хребте Алтынтаг. Далее он пересекает в северо-восточном направлении пустыню Гоби и подходит к берегу Охотского моря близ Шантарских о-вов.

В группе дугообразных «состоят» четыре линеамента длиной от 3500 до 11000 км. Уже упоминавшаяся линия Карпинского (7500 км) начинается у гор Монтань-Нуар, на юге Франции. Огибая по дуге Альпы и Карпаты, она фиксируется в Свентокшиских горах, в районе Канева, Донецком кряже, Прикаспийской низменности и на п-ове Мангышлак. 3aтем линеамент проходит через Султан-Увайс, у 61° в. д., и прослеживается, по В. Бушу, до Сулеймановых гор.

Пальмиро-Барабинский линеамент (11 000 км), давно известный на отрезке Ливан - долина Куры, на юго-западе переходит в Африку. В Азии он прослежен через Апшерон, северное побережье Аральского моря и озеро Тенгиз в район юго-восточнее озера Чаны. На Среднесибирском плоскогорье он установлен вдоль широтного Московско-Охотского линеамента, а затем через Забайкалье и Приамурье достигает пролива Цугару.

Линеаменты других материков

И

з-за относительно слабой изученности некоторых континентов (например, Южной Америки) и небольшой обеспеченности их территорий космическими снимками выделить сеть линеаментов, такую, как в Европе и Азии, пока не удается. Впрочем, это дело сравнительно близкого будущего. Ныне уверенно можно отметить лишь несколько единичных гигантских линейных структур. Так, на Африканском материке отдешифрировано продолжение меридиональной зоны Средиземное море - озеро Мьёса: от побережья Туниса оно пересекает Сахару на юг и достигает залива Биафра. Длина отрезка более 3500 км.

Атласско-Азовский линеамент, начинаясь на побережье Атлантики, проходит вдоль всей горной системы Атлас и через Сицилию и юг Апеннинского п-ова выходит к нижнему Дунаю. Далее он контролирует северный берег Азовского моря и долину нижнего Дона, заканчиваясь у Волгограда. Длина этой структуры на территории Африки 1500 км (общая протяженность - около 6000 км).

Широтный линеамент Бохадор-Рибат (около 5000 км), выделенный Я. Кацем, начинается у мыса Бохадор, на атлантическом побережье материка. Несколько отклоняясь к северу, он пересекает всю Сахару и достигает Суэцкого залива близ 30° с. ш. Далее, почти не меняя направления, структура протягивается через Аравийский п-ов и Иранское нагорье, заканчиваясь у 64° в. д.

К северо-восточной группе африканских линеаментов относится Леврие-Зоруг (около 3500 км). От бухты Леврие, у 21° с. ш., близ мыса Кап-Блан (ныне Нуадибу) он пересекает Сахару до мыса Зоруг, залив Сидра.

К северо-восточной группе африканских линеаментов относится Леврие-Зоруг (около 3500 км). От бухты Леврие, у 21° с. ш., близ мыса Кап-Блан (ныне Нуадибу) он пересекает Сахару до мыса Зоруг, залив Сидра. В Южной Америке по геолого-морфологическим данным Я. Кац выделил два линеамента - Амазонский (3500 км), контролирующий почти широтную долину Амазонки, и меридиональный Парагвайско-Паранский (2500 км). Их существование подтверждено дешифрированием космических снимков.

К линеаментным структурам, возможно, следует отнести и Долину МГГ в Антарктиде, открытую советскими исследователями.

Космос - океанологам

И

зучение океана из космоса дало возможность впервые «окинуть взглядом» всю акваторию каждого из них, проследить поведение некоторых течений и ледового панциря в Арктике и Антарктике. Дистанционные наблюдения принесли ряд сюрпризов. Так, например, космические снимки с американского спутника, сделанные в течение августа - сентября 1964 г., убедительно показали, что у побережья Антарктиды от Берега Правды до Земли Эндерби постоянные полыньи встречаются значительно чаще, чем отмечала ледовая разведка с самолетов и судов. В начале 70-х гг. в Антарктике, Беринговом и Охотском морях были открыты крупные (до 200 км в поперечнике) ледовые вихри, твердые аналоги обнаруженных в 60-х гг. океанических вихрей.

Американским астронавтам с обитаемой орбитальной станции «Скайлэб» в 1973–1974 гг. удалось обнаружить искривление поверхности Атлантики типа провалов и воронок в акватории Бермудского треугольника. Исследованиями из космоса установлена прямая зависимость облачного покрова планеты от океанических течений (кстати, такая связь выявлена и с горными системами).

Наблюдениями «с небес» доказано, что упоминавшиеся ранее вихри - не единичное, а вполне обычное явление, обусловленное общим круговоротом океанических вод. Это открытие в 1978 г. сделал советский космонавт Владимир Васильевич Коваленок . Подлетая к Тиморскому морю, он четко зафиксировал искажение уровня Индийского океана, имеющее форму холма. Ряд океанологов воспринял эту информацию как ошибочную - ранее ничего подобного никто не отмечал. Вскоре, впрочем, сообщение В. Коваленка подтвердилось: в июле 1979 г. Владимир Афанасьевич Ляхов и Валерий Викторович Рюмин в северо-западной акватории Индийского океана, у 40° с. ш., при совершенно ясной погоде отметили водяную гряду широтного направления длиной не менее 100 км. Это локальное возвышение оказалось сравнительно высоким: тень от него образовала отчетливую зону вдоль северных скатов. Они же наблюдали участок подводного хребта к юго-западу от Гавайских островов. (Аналогичные сообщения поступали и ранее от советских и американских космонавтов, в частности В. Коваленок усмотрел отрезок Срединно-Атлантического хребта.) Впрочем, они все видели не сами подводные поднятия, а их «изображения», созданные планктоном или взвешенными в воде частицами, на расположение которых оказывает воздействие рельеф дна.

В. Ляхов с орбиты засек множество различных по габаритам водяных вихрей; удалось выяснить, что в экваториальной зоне доминируют вихри-антициклоны, а в более высоких широтах - их прямые противоположности.

В самое последнее время (1984) по данным, полученным с искусственных спутников, к югу от о. Шри-Ланка в Индийском океане открыта гигантская впадина - водная поверхность в ее пределах находится на 100 м ниже уровня окружающей акватории. Такие же «чаши» обнаружены близ Австралии и в Атлантике, у побережья Центральной и Южной Америки.

Веб-дизайн © Андрей Ансимов, 2008 - 2014 год

Первые изображения Земли из космоса были получены с помощью фотокамеры. Эта методика применяется и в настоящее время. Спутник с фоторегистрацией «Ресурс-Ф1 М» (Россия) позволяет фотографировать Землю в интервале длин волн 0,4-0,9 мкм. Отснятые материалы спускаются на Землю и проявляются. Анализ снимков, как правило, проводится визуально с помощью проекционной аппаратуры, которая позволяет также получать цветные фотоотпечатки. Метод обеспечивает высокую геометрическую точность изображения; можно увеличить снимки без заметного ухудшения качества. Однако он малооперативен, поскольку изображение представлено в виде фотографий, а не в цифровой форме, и эффективен в видимом и ближнем ИК-диапазонах.

Этих недостатков лишены сканерные методы. Сканер с цилиндрической разверткой в принципе представляет собой маятник, закрепленный в одной точке и колеблющийся поперек направления движения аппарата (рис. 3). На конце маятника в его фокальной плоскости установлен объектив с точечным фотоприем ным устройством (фотоэлектронный умножитель, фотодиод, фоторезистор).

Рис. 3

При движении аппарата над Землей с выхода фотоприемного устройства снимается сигнал, пропорциональный освещенности в видимом или ближнем ИК-диапазоне того участка земной поверхности, на который в данный момент направлена ось объектива. Еслифотоприемное устройство-фоторезистор, то можно регистрировать излучение в тепловом ИК-диапазоне и определять температуру поверхности и об лаков. На практике сканер неподвижен, а качается (вращается) зеркало, отражение от которого через объектив попадает на фотоприемное устройство. Сканерная информация в цифровой форме передается со спутника в реальном времени или в записи на бортовой магнитофон, на Земле она обрабатывается на ЭВМ.

Линейный сканер содержит расположенные в линию неподвижные фоточувствительные элементы 190-1000 и более на приборах с зарядовой связью (ПЗС)-линейку ПЗС или несколько таких линеек длиной порядка сантиметра. На линейки через объектив фокусируется изображение земной поверхности, все элементы находятся в фокальной плоскости. Линейка, ориентированная поперек направления движения спутника, перемешается вместе с ним, последовательно «считывая» сигнал, пропорциональный освещенности различных участков поверхности и облаков. Линейные сканеры на ПЗС работают в видимом и ближнем ИК-диапазонах.

Сканер МСУ-СК, устанавливаемый на российских спутниках «Ресурс-О» и др., единственный, в котором реализован перспективный принцип конической развертки, заключающийся в перемещении визирного луча по поверхности конуса с осью, направленной в надир. Сканирующий луч описывает по сферической поверхности Земли дугу (обычно в переднем секторе сканирования). За счет перемещения спутника изображение представляет собой совокупность дуг. Достоинством такого вида развертки является постоянство угла между поверхностью Земли и направлением на спутник, что особенно важно при изучении растительности. Постоянно также расстояние L от спутника до каждой точки дуги, так что разрешение сканера МСУ-СК, в отличие от сканеров с цилиндрической и линейной разверткой, постоянно по всему изображению. При этом для достаточно больших участков изображения постоянно и атмосферное ослабление восходящего излучения и нет необходимости в атмосферной коррекции. Отсутствуют также искажения изображения за счет кривизны Земли, характерные для других сканеров.

Материал из Юнциклопедии


Не так много лет минуло со дня запуска в 1957 г. первого искусственного спутника Земли, но за этот короткий срок космические исследования сумели занять одно из ведущих мест в мировой науке. Ощутив себя гражданином Вселенной, человек, естественно, захотел лучше узнать свой мир и его окружение.

Уже первый спутник передал ценную информацию о свойствах верхних слоев атмосферы Земли, об особенностях прохождения радиоволн через ионосферу. Второй спутник положил начало целому научному направлению - космической биологии: на его борту в космос впервые отправилось живое существо - собака Лайка. Третий орбитальный полет советского аппарата снова посвящался Земле - исследованию ее атмосферы, магнитного поля, взаимодействия воздушной оболочки с солнечным излучением, метеорной обстановки вокруг планеты.

После первых запусков стало ясно, что исследование космоса должно вестись целенаправленно, по долгосрочным научным программам. В 1962 г. в Советском Союзе начались запуски автоматических спутников серии «Космос», число которых в настоящее время приближается уже к 2 тыс. Спутники «Космос» выводятся на близкие и далекие от Земли орбиты, оснащаются научными приборами для изучения ближайших окрестностей планеты и многообразных явлений в верхней атмосфере и околоземном космическом пространстве.

Спутники «Электрон» и орбитальные автоматические обсерватории «Прогноз» рассказали о Солнце и его определяющем влиянии на земную жизнь. Изучая наше светило, мы постигаем также тайны далеких звезд, знакомимся с работой естественного термоядерного реактора, построить который на Земле пока не удается. Из космоса увидели и «невидимое солнце» - его «портрет» в ультрафиолетовых, рентгеновских и гамма-лучах, которые не доходят до поверхности Земли из-за непрозрачности атмосферы в этих участках спектра электромагнитных волн. Кроме спутников-автоматов длительные исследования Солнца вели советские и американские космонавты на орбитальных космических станциях.

Благодаря исследованиям из космоса мы лучше узнали состав, строение и свойства верхних слоев атмосферы и ионосферы Земли, зависимость их от солнечной активности, что позволило повысить надежность прогноза погоды и условий радиосвязи.

«Космический глаз» позволил не только по-новому оценить «внешние данные» нашей планеты, но и заглянуть в ее недра. С орбит лучше обнаруживаются геологические структуры, прослеживаются закономерности строения земной коры и размещения нужных человеку минералов.

Спутники позволяют в считанные минуты просмотреть и огромные акватории, передать их снимки специалистам-океанологам. С орбит получают информацию о направлениях и скорости ветров, зонах зарождения циклонических вихрей.

С 1959 г. началось изучение спутника Земли - Луны - с помощью советских автоматических станций. Станция «Луна-3», облетев Луну, впервые сфотографировала ее обратную сторону; «Луна-9» осуществила мягкую посадку на спутник Земли. Чтобы иметь более ясное представление о всей Луне, необходимы были длительные наблюдения с орбит ее искусственных спутников. Первый из них - советская станция «Луна-10» - был запущен в 1966 г. Осенью 1970 г. к Луне ушла станция «Луна-16», которая, вернувшись на Землю, привезла с собой образцы пород лунного грунта. Но только длительные систематические исследования лунной поверхности могли помочь селенологам разобраться в происхождении и строении нашего естественного спутника. Такую возможность вскоре предоставили им самоходные советские научные лаборатории - луноходы. Результаты космических исследований Луны предоставили новые данные и об истории происхождения Земли.

Характерные особенности советской программы изучения планет - планомерность, последовательность, постепенное усложнение решаемых задач - особенно ярко проявились в исследованиях Венеры. Два последних десятилетия принесли больше сведений об этой планете, чем весь предыдущий более чем трехвековой период ее изучения. При этом значительная часть информации добыта советской наукой и техникой. Спускаемые аппараты автоматических межпланетных станций «Венера» не раз совершали посадки на поверхность планеты, зондировали ее атмосферу и облака. Советские станции стали и первыми искусственными спутниками Венеры.

Начиная с 1962 г. производится запуск советских автоматических межпланетных станций к планете Марс.

Космонавтика изучает и более удаленные от Земли планеты. Сегодня можно рассматривать телевизионные изображения поверхности Меркурия, Юпитера, Сатурна и их спутников.

Астрономы, получившие в свое распоряжение космическую технику, естественно, не ограничились изучением лишь Солнечной системы. Их приборы, вынесенные за пределы атмосферы, непрозрачной для коротковолновых космических излучений, нацелились в сторону других звезд и галактик.

Идущие от них невидимые лучи - радиоволны, ультрафиолетовое и инфракрасное, рентгеновское и гамма-излучение - несут ценнейшую информацию о том, что происходит в глубинах Вселенной (см. Астрофизика).

Райд Юлия

В реферате отражена история исследования Земли из космоса, опысывается опыт применения искусственных спутников для исследования природных ресурсов Земли.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

основная общеобразовательная школа №15

муниципального образования Успенский район

Райд Юлия Александровна

8 класс, 30.06.1997г.

Руководитель:

Старикова Татьяна Васильевна

Тел. 8861067251

Факс: 886104067226

2012 г.

I. Введение

История исследования Земли из космоса

II. Применение искусственных спутников для исследования природных ресурсов Земли:

1. Картография

2. Сельское хозяйство

3. Лесные пожары

4. Океанография

5. Рыболовство

6. Ледовая разведка

7. Нефтяные загрязнения

8. Загрязнение воздуха

III. Заключение. Выводы.

IV. Используемая литература:

Аннотация

В ряду разнообразных космических технологий можно выделить несколько блоков. Это - создание ракетно-космических систем и изготовление бортовой аппаратуры для них; телекоммуникационные (связь, телевидение и т. д.) и навигационные технологии (точное определение координат всевозможных наземных объектов); а еще - дистанционное зондирование Земли (ДЗЗ) - съемки нашей планеты со спутников, находящихся на околоземных орбитах.Если в первые годы развития практической космонавтики основное внимание уделялось созданию и совершенствованию ракетно-транспортных систем (в том числе и для решения военных задач), то в настоящее время, как свидетельствует, в частности, зарубежная аналитика, на первое место по прибыльности выходит блок исследований Земли из космоса. Их результаты используются в самых разных отраслях экономики. Только из космоса можно одновременно собрать глобальную информацию о состоянии атмосферы и океанов, сельском хозяйстве и геологии, о результатах деятельности человека, непрерывно изменяющей условия жизни на Земле (увы, не всегда в лучшую сторону!).

Сотрудниками лаборатории климатических исследований отдела исследований Земли из космоса ИКИ РАН накоплена и постоянно пополняется база данных спутникового мониторинга Земли, полученных в рамках программы DMSP (Defence Meteorological Satellite Program) с радиометрическими приборами на борту.
DMSP - это программа долговременного мониторинга Земли, поставляющая оперативную глобальную метеорологическую, океанографическую и солнечно-геофизическую информацию. Спутники наблюдения особенно эффективны для исследования природных ресурсов, которые меняются и возобновляются со временем.

I. История исследования Земли из космоса

Человек впервые оценил роль спутников для контроля за состоянием сельскохозяйственных угодий, лесов и исследования других природных ресурсов Земли лишь спустя несколько лет после наступления космической эры. Начало было положено в 1960 г., когда с помощью метеорологических спутников были получены подобные карте очертания земного шара, лежащего под облаками. Эти первые черно-белые телевизионные изображения давали весьма слабое представление о деятельности человека, и тем не менее на одном из них были отмечены слабые пятна на снегу в северной Канаде, которые оказались следами расчистки лесов.

В мае 1963 г. американский астронавт во время полета на корабле «Меркурий» поразил наземный персонал сообщением о том, что он видит дороги, строения и даже дым из труб. Наземная служба управления приняла это за галлюцинации! Последующие полеты в космос подтвердили наблюдения Купера. На цветных снимках, сделанных астронавтами, были зафиксированы изменения в городской застройке и прогресс в сооружении новых дорог в течение шестимесячного интервала между полетами, были доставлены из космоса четкие изображения полей пшеницы. На некоторых космических снимках можно было выделить места выпадения дождя накануне вечером, причем не по виду мокрой земли, а по различным цветовым оттенкам, связанным с «развитием локонов» растительности. Вскоре были разработаны новые технические средства, позволявшие повысить качество наблюдений, были использованы достижения в области военных исследований по расширению возможностей обзора с разведывательных самолетов. Информация извлекалась из многоспектральных изображений в видимом и инфракрасном (ИК) областях спектра, что давало возможность различать незначительные изменения ИК-излучения на Земле, не воспринимаемые глазом человека, но содержащие важную информацию.

Аппаратура наблюдения была двух основных типов: камеры, заряженные пленкой, чувствительной только к ИК-излучению, и радиометры, представляющие собой специальные радиоприемники, настроенные только на длины волн ИК-диапазона. Например, на первых ИК-фотографиях, полученных с исследовательских самолетов, можно было различать поля с нормально развивающимися и пораженными болезнями сельскохозяйственными культурами. Участки здоровых культур имели на фотоснимках ярко-розовый или красно-белый цвет, а пораженных культур - сине-черный цвет. При этом начало заболевания зачастую удавалось обнаружить раньше, чем фермеру на земле. Многоспектральные датчики, широко используемые в настоящее время на спутниках наблюдения, основаны на едином принципе: объекты и явления на земной поверхности в общем случае можно распознать по энергии излучения, которое они испускают или отражают. Спектральная характеристика растительности иная, чем горной породы, почвы или воды. Изображения представляются в цифровой форме и передаются на параболические антенны наземных приемных станций, где они записываются на магнитофонную ленту.

II. Применение искусственных спутников для исследования природных ресурсов Земли

1. Картография

Одной из первых областей применения изображений земной поверхности, полученных в соответствии с программой исследования природных ресурсов, была картография. В доспутниковую эпоху карты многих областей, даже в развитых районах мира, были составлены неточно. Изображения, полученные с помощью спутников позволили скорректировать и обновить некоторые существующие карты масштабом 1:250 000 и менее. Свежая информация позволила выявить развитие городов со времени выпуска последних карт, изменения дорог и железнодорожных путей.

Изображения со спутников также были использованы для построения подробных карт, необходимых при строительстве дорог, прокладке железнодорожных путей и ирригационных каналов. Появилась возможность составлять карты подводного рельефа, например коралловых рифов, представляющих потенциальную опасность для мореплавания. Основным фактором снижения стоимости картографирования является высокая скорость космической съемки по сравнению с другими методами

2. Сельское хозяйство

Используя полученные со спутника, исследователи могут идентифицировать отдельные культуры на полях. Среди различаемых культур злаки, кукуруза, соевые бобы, сорго, овес, травы (четыре вида), салат, горчица, томаты, морковь и лук. Ученые различают влажные засеянные поля и голую землю на больших площадях. Такие возможности позволяют осуществить глобальное наблюдение производства продуктов питания, которое поможет человечеству избежать опасности недостатка продовольствия. Исследователи также сосредоточили внимание на возможностях достижения лучшего использования ресурсов сельскохозяйственных культур и леса. Благодаря регулярным наблюдениям со спутников можно установить наилучшие сроки посева и жатвы, обеспечивающие максимальный урожай, путем контроля состояния почвы и содержания влаги; в период роста можно провести инвентаризацию культур и заблаговременно оповестить о засухе, наводнениях и эрозии.

Подобного рода сельскохозяйственное инспектирование позволило бы провести инвентаризацию на территории тропиков, потенциально пригодной для земледелия после расчистки, и получить информацию о плодородных и засушливых районах, которые можно сделать плодородными посредством ирригации. С истема наблюдения за естественными угодьями из космоса позволила установить наилучшие сроки выгона крупного рогатого скота на пастбища.

3. Лесные пожары

Использование информации со спутников выявило ее неоспоримые преимущества при оценке объема строевого леса на обширных территориях любой страны. Стало возможным управлять процессом вырубки леса и при необходимости давать рекомендации по изменению контуров района вырубки с точки зрения наилучшей сохранности леса.

Благодаря изображениям со спутников стало также возможным быстро оценивать границы лесных пожаров. При обзоре территории Канады было зарегистрировано 42 очага огня в северной части одной из провинций, что позволило оценить масштабы опасности

4. Океанография

Кроме фотографирования океанов различные спутниковые системы позволяют получать информацию непосредственно с моря. Автоматические океанские буи могут измерять местные температуры воздуха и поверхности воды, температуру, давление и содержание соли на глубине, высоту волн и скорость поверхностных течений. Эта информация, переданная по команде на спутник, записывается и ретранслируется на одну из наземных станций для оперативного распространения.В настоящее время можно получать информацию о состоянии моря непосредственно со спутника методами микроволновой радиолокации (обратное рассеяние).

5. Рыболовство

Рыбаки Тихого океана используют информацию со спутников по расположению тепловых границ в океане, у которых обычно скопляются лососевые рыбы и тунец благодаря высокому содержанию корма в воде. Благодаря спутникам, поставляющим информацию о постоянно меняющемся пути течений Гольфстрим, рыбаки использовали её для выбора рациональных маршрутов. Что касается глубоководных наблюдений, то современные чувствительные приборы спутников способны «видеть» при чистой воде на глубине до 20 м. В Карибском море это, например, позволило составить карту ранее неизвестных мелей. Проводятся исследования океанов с борта станций, а также со спутников, производящих измерения электромагнитного излучения морской поверхности в видимом, инфракрасном и микроволновом диапазонах.

Эти приборы предоставят информацию о
1) прибрежных загрязнениях,
2) сохранении и использовании рыбных запасов,
3) прокладывании маршрутов судов с учетом океанских течений,
4) учете силового воздействия волн при проектировании сооружений в открытом море и электростанций, использующих энергию волн,
5) картировании полярных шапок, температур океана и ветров с целью лучшего предсказания изменений климата и погоды.

6. Ледовая разведка

Использование спутников для целей обзора облегчило задачу прокладывания курса морских судов. При эксплуатации советского атомного ледокола «Сибирь» была использована информация с четырех типов спутников для составления наиболее безопасных и экономичных путей в северных морях. В одном из таких плаваний ледокол прошел путь от Мурманска до Берингова пролива. Получаемая с навигационного спутника «Космос-1000» информация использовалась в вычислительной машине корабля для определения точного местоположения. Со спутников «Метеор» поступали изображения облачного покрова и прогнозы снежной и ледовой обстановки, что позволило выбирать наилучший курс. С помощью спутника «Молния» поддерживалась регулярная связь корабля с базой.

Навигация судов в холодных морях полностью зависит от знания свойств, распределения, разнообразия и поведения льда и айсбергов. Для составления прогнозов необходима информация о температурах воздуха и моря, выпадении осадков, ветрах и течениях. Сведения о толщине льда на озерах и реках, а также о ледовой обстановке на море можно получить со спутников с помощью инфракрасных датчиков в условиях отсутствия облачности. Пассивная микроволновая радиометрия, по-видимому, станет основой всепогодных систем, а фотографирование с высоким разрешением - средством контроля состояния побережья и прибрежных вод. Одно из наиболее впечатляющих изображений гигантского айсберга было получено с борта спутника во время его полета над Антарктидой 31 января 1977 г. По форме похожий на ботинок, а по размерам близкий к острову Роде, айсберг кажется покоящимся в заливе, но в действительности он находится в открытой воде и временно сел на мель севернее о-ва Джеймса Росса.

7. Нефтяные загрязнения

Капитан танкера, который считает возможным отмывать резервуары в прибрежных водах, в будущем, вероятно, вступит в борьбу со спутниками, которые пристально наблюдают за его антиобщественной деятельностью. В отличие от плохой видимости нефтяных пятен с самолетов, обзор с которых в любом случае ограничен узкими полосами океана из-за малой высоты, эти пятна эффективно выявляются спутниками в глобальном масштабе, за исключением районов с устойчивой низкой облачностью. Для этих целей спутниковые датчики измеряют потоки солнечного света, отраженного от поверхности океана. Излучение пролитой нефти резко отличается от излучения обычной океанской воды в близком к ультрафиолетовому диапазоне длин волн и близком к красному диапазону. Поляризация в отраженном свете от нефтяных пятен также указывает на резкое отличие.

Можно не только различать легкие и тяжелые нефтяные фракции в одном пятне (легкие имеют более светлый оттенок), но и оценивать объем нефти на основе повторных наблюдений; знание типа и качества нефти поможет определить его месторождение.

Многоспектральное развертывающее устройство (МРУ) такое устройство давало четыре синхронных изображения в различных диапазонах длин волн: полоса 4 (зеленая) - 0,5-0,6 мкм; полоса 5 (нижняя красная) - 0,6-0,7 мкм; полоса 6 (верхняя красная/нижняя инфракрасная) - 0,7-0,8 мкм; полоса 7 (инфракрасная) - 0,8-1,1 мкм. На спутнике «Лэндсат-3» устройс В полосе 7 наилучшим образом воспринимается распределение суши и воды; в полосе 5 - топографические особенности; в полосе 4 качественно различимы глубина и мутность стоячей воды; в полосе 6 наилучшим образом воспринимаются тональные контрасты, отражающие характер использования земли, а также в максимальной степени различаются суша и вода

8. Загрязнение воздуха

С изменениями циркуляции в атмосфере (и соответственно метеорологическими наблюдениями со спутников) тесно связана проблема загрязнения воздуха. Ежегодно выбросы промышленных предприятий, выхлопы автомобилей и другие источники образуют сотни миллионов тонн токсичных газов. Облака смога над Лос-Анджелесом и другими городами отчетливо видны на фотографиях, полученных из космоса.

Удивительное заключается в том, что, несмотря на ежегодные выделения огромных масс окиси углерода, стабильного роста ее концентрации не происходит. Следовательно, должен существовать некий природный механизм для удаления образующегося газа.

Глобальное картирование областей атмосферы с высокой, низкой и средней концентрацией газа осуществляется корреляционным интерферометром - оптическим прибором, способным обнаруживать незначительные количества газообразных компонентов. Предполагается, что благодаря монотонному сканированию в течение длительных периодов времени прибор позволит выявить механизм изменения состава газа.

Пока этот механизм не познан, невозможно предсказать, возрастет ли в будущем концентрация окиси углерода и если возрастет, то насколько.

Вызывает также опасение повсеместное возрастание количества двуокиси углерода в атмосфере из-за глобальных масштабов сжигания ископаемых топлив, это производит эффект накрывания Земли все более толстым одеялом, которое продолжает пропускать солнечный свет, но снижает отражение теплового излучения обратно в космос и, таким образом, способствует накоплению тепла у поверхности. Если экстраполировать современные темпы сжигания ископаемых топлив, то к 2025 г. температура Земли теоретически вполне может повыситься на 5,5°С. Это не может не вызывать беспокойства, поскольку повышение температуры даже на доли градуса приводит к изменениям климата. Самые плодородные земли могут превратиться в пустыни, а бесплодные районы стать источниками производства сельскохозяйственных культур.Вопреки ожиданиям не все результаты исследований удручают. Например, некоторые из них свидетельствуют о том, что окись углерода инициирует сложную совокупность химических реакций, которые могут привести к образованию животворного озона в нижних слоях атмосферы, а точнее в тропосфере на высотах 10-15 км.

Одной из наиболее важных областей исследований с помощью спутников является часть стратосферы, содержащая слой озона, который предохраняет Землю и ее обитателей от пагубного действия ультрафиолетового излучения Солнца. Стратосфера, простирающаяся от верхней границы облаков до высоты около 50 км, содержит также слой пылеобразных частиц и мелких жидких капель (аэрозолей), который находится ниже зоны максимальной концентрации озона. Реактивные самолеты являются постоянным источником поступления аэрозолей и газов непосредственно в атмосферу; даже фторуглеводороды, используемые как рабочий газ в аэрозольных распылителях, в конце концов оказываются там.

Таким образом, важно то, что ученые постоянно следят за самыми различными воздействиями загрязняющих веществ на атмосферу в глобальном масштабе, и в этом деле ключ к решению проблем помогают найти спутники

III. Заключение. Выводы

К огда потребовалось по-новому взглянуть на нашу планету с точки зрения проблем, связанных с истощением природных ресурсов, увеличением численности населения и загрязнением окружающей среды, ученые нашли выход в создании спутников для исследования природных ресурсов Земли. Только из космоса можно одновременно собрать глобальную информацию о состоянии атмосферы и океанов, сельском хозяйстве и геологии, о результатах деятельности человека, непрерывно изменяющей условия жизни на Земле (увы, не всегда в лучшую сторону!).

Спутники наблюдения особенно эффективны для исследования природных ресурсов, которые меняются и возобновляются со временем, таких, как возделываемая земля, леса, реки, прибрежная зона, подвергаемая эрозии, снег и зоны затопления.

Значение исследований природных ресурсов Земли получило широкое признание. Страны начали разрабатывать спутники для решения аналогичных задач, что положило начало постоянно действующей системе. накоплен значительный опыт исследований, результаты которых способствуют решению задач по экологии, геологии, развитию сельского хозяйства и других отраслей. Долгосрочной целью этого проекта является инвентаризация невозобновляемых и медленно возобновляемых ресурсов, таких, как минералы и ископаемые топлива, водные запасы, наблюдение за состоянием сельского хозяйства и атмосферы. Программа ориентирована на возможность опознавать, прогнозировать и в ряде случаев контролировать некоторые процессы, относящиеся к океанографии, климатологии, эрозии почвы и загрязнению воды, а также следить за потенциально опасными природными явлениями, такими, как наводнения, засуха, штормы, землетрясения и извержения вулканов

Сейчас в мировой космической деятельности, как правило, ориентируются не столько на отдельные национальные спутники, сколько на их группировки. Перспектива исследования Земли из космоса заключается в расширении и развитии международного сотрудничества.

Используемая литература:

1. Железняков. Советская космонавтика, 1998г.

2. Журнал «Коммерсант- Власть», №№ от10 и 17. 04. 2001г.

3. Использование материалов из сети «Интернет»

Конспект урока на тему " Современные космические методы изучения Земли на службе

Цель : ознакомление с возможностями космических методов изучения Земли и применением результатов исследования в различных сферах деятельности человека.

Задач и:

    изучение способ съемки Земли из космоса

    ознакомление с историей и современным состоянием космического метода, достижениями отечественной и зарубежной космонавтики, перспективами развития

    ознакомление с космическими снимками и овладеть основами визуального дешифрирования космических изображений

Космические исследования и освоение космического пространства – одно из важнейших проявлений современной научно-технической революции. С покорением космоса человечество открыло много нового и неизвестного. Появилась возможность изучать свой дом – Землю на расстоянии. Так было положено начало космическим методам изучения Земли.

Космические методы относятся к дистанционным, т.к. исследуемый объект изучается на дистанции. Дистанционное зондирование – это получение информации об объекте без вступления с ним в прямой контакт.

Полученные таким образом сведения имеют в науке огромную ценность. Оказалось, что дистанционные космические методы имеют существенные преимущества перед наземными методами. Прежде всего, возможность получения изображения Земли в разных масштабах (от глобального до локального), оперативность, возможность повторить исследование неоднократно. Съемка из космоса позволяет охватить единым взглядом обширные пространства и одновременно рассмотреть многообразные детали строения местности, в том числе те, которые не заметны в поверхности Земли.

В своем развитии дистанционное зондирование (исследование) имеет несколько этапов:

    В 18 веке с помощью простейшей камеры-обскуры – светонепроницаемой коробки с небольшим отверстием в центре – получали рисованные снимки. Съемку делали с высоты птичьего полета на воздушном шаре. По таким снимкам составляли топографические карты местности. Это была сложная кропотливая работа.

    С открытием фотографии в 1839 г. дело пошло значительно быстрее. Впервые стало возможным постоянно и объективнофиксировать изображение. Первоначально фотоаппараты размещались на простых летательных аппаратах (воздушные шары, воздушный змей) и даже птицах. Это была аэрофотосъемка местности.

    Следующий шаг к тому, что мы теперь называем дистанционным зондированием, был связан с развитием самолетостроения. Уже в начале 20 века были получены аэрофотоснимки с самолетов. В годы Первой мировой войны выполняли аэрофотосъемку в разведывательных целях.

    В 30-ые годы 20 века аэрофотосъемка заменила наземную съемку и стала основным методом составления карт. Так, к середине 50-х годов с помощью аэрофотоснимков были составлены топографические карты всей территории СССР.

    Важнейшим толчком в развитии метода дистанционно зондирования послужило покорение космоса человеком. В 60-ые годы 20 века стало возможным получение снимков, сделанных из космоса. Это событие послужило толчком в разработке новых типов съемочных аппаратов. В США и СССР разрабатываются новые оптико-электронные системы – сканеры, выполняющие многозональнуюсъемка земной поверхности.

    В 80-ые годы стало возможным широкое применение комических снимков во всех областях изучения земли.

В настоящее время вокруг Земли движется множество спутников-съемщиков разных стран, которые регулярно делают съемку Земли и поставляют на Землю тысячи разных снимков земной поверхности.

Для получения снимков различной степени детальности, спутники запускают на разные высоты. Выделяют три основных высотных яруса их полета :

    Спутники самого верхнего яруса , запускаемые на высоту 36 000 км, летают над экватором. Их называют геостационарными, поскольку, вращаются вместе с земным шаром и делая полны оборот вокруг земли ровно за одни сутки. Такие спутник как бы висят в небе над одной и той же точкой земли. Геостационар может выполнить съемку почти целого полушария Земли.

К геостационарным спутникам относятся российский «Электро», спутник Евросоюза «М eteosat », американский « GOES - W » и « GOES - Е», японский « GMS », индийский « Insat ». Они ведут непрерывное глобальное «патрулирование» планеты, каждые полчаса передавая по радиоканалам обзорные снимки.

    Спутники среднего яруса , орбита которых проходит над полюсами (поэтому их называют полярными), летают на высоте от 600 до 1500 км. Для съемки всей земной поверхности им требуется от одних суток до 2-3 недель.

К спутникам среднего яруса относятся: российский спутник «Метеор 1» и «Метеор2», американский спутник NOAA , спутники России «Ресурс – П», «Ресурс – О», американский Landsat , французский SPOT .

    Спутники самого нижнего яруса , летающие на высоте 200-300 км, ведут детальную съемку отдельных участков земной поверхности, расположенных вдоль трассы полета.

Космические системы наблюдения Земли подразделяются по своему назначения на метеорологические, ресурсные, океанологические, картографические, навигационные, научно-исследовательские.

Для получения снимков со спутников применяют различную съемочную аппаратуру. Сравнивая ее с человеческими глазами, можно сказать, что эти глаза бывают разными – дальнозорким и близорукими, одни видят в темноте, другие сквозь туман и облака, есть даже «дальтоники», которые видят объекты в искаженных цветах.

Различают следующие группы таких аппаратов:

    Фотографические аппараты . Получаемые таким аппаратом снимки называют плановые, т.к. по геометрическим свойствам они приближены к плану местности. С помощью космических фотоаппаратов получают снимки только в видимом диапазоне.

    Спутниковые сканеры . В отличие от фотоаппаратов работают во многих диапазонах электромагнитного спектра (получают снимки не только в видимом, но и инфракрасном диапазоне)

    Радиолокаторы . Если фотоаппараты и сканеры регистрируют отраженное объектами солнечное или собственное излучение, то радиолокаторы сами «освещают» местность радиолучом и принимают отраженный радиосигнал. Радиолуч как бы ощупывает, зондирует поверхность, чутко реагируя на ее шероховатость. Поэтому на радиолокационных снимках видны даже небольшие неровности рельефа.

В результате выполнения космических съемок накоплен многомиллионный фонд снимков. Для того, чтобы эффективно использовать эти изображения, они систематизированы, сгруппированы по возможностям их применения. При всем многообразии снимков у них можно выделить ряд общих характеристик:

    Масштаб снимка . Снимки, как и карты, различаются по масштабу. Они бывают:

    крупномасштабные – в 1 см – 10 м и даже крупнее.

    среднемасштабные

    мелкомасштабные (в 1 см – 100 км)

Масштаб снимка зависит от высоты выполнения съемки, фокусного расстояния аппарата, кривизны земной поверхности. От масштаба зависит обзорность снимка: на крупномасштабных снимках изображены лишь отдельные дома, на мелкомасштабных можно увидеть целые континенты.

    Обзорность снимков – это охват территории одним снимком.

По обзорности снимки разделяют: глобальные (охватываю всю планету), крупнорегиональные (охватывают крупные регионы мира: Европа, Азия и т.д.), региональные (регион и его часть: Бельгия, Московская область); локальные (изображают небольшой участок местности: небольшой город, микрорайон)

    Разрешение . С масштабом снимков связана их способность воспроизводить мелкие объекты и отдельные детали. Крупномасштабные снимки имеют разрешение в десятки сантиметров, т.е. на них могут быть видны даже ветки деревьев. Мелкомасштабные снимки имеют разрешение в несколько км, в результате наблюдатель видит очень большие участки леса или всю лесную зону.

    Ретроспективность. Снимок объективно фиксирует состояние местности, отдельных объектов и явлений на момент съемки. Сопоставляя снимки разных лет, можно оценить динамику природных процессов: например, насколько отступил ледник, как растут овраги, изменяются площади лесов.

    Стереоскопичность. Два снимка одно и того же участка местности, полученные с разных точек, образуют стереоскопическую (т.е. воссоздающую объемное изображение) пару снимков. Вооружившись стереоскопом, можно наблюдать по этим снимкам не плоское изображение, а объемную и очень выразительную модель местности. Это замечательное свойство снимков важно для изучения рельефа земной поверхности и составления карт.

    Спектральный диапазон .Современная съемочная аппаратура способна делать съемку в разных диапазонах электромагнитного излучения.

По этому признаку выделяют три группы снимков:

    в видимом диапазоне, который называют световым

    в тепловом инфракрасном диапазоне

    в радиодиапазоне.

От выбора диапазона зависит то, какие объекты будут изображены на снимках. На снимках в видимом диапазоне изображается все, что видно человеческим глазом; снимки в инфракрасном тепловом диапазоне позволяют определить температуру поверхности, а радиодиапазоне – ее шероховатость (т.е. неровности поверхности). Очень часто одновременно получают не один, а целую серию снимков в разных спектральных диапазонах. Такие снимки называются многозональными .

С космическим методом изучения земли, появлением космической съемки и съемочной аппаратуры, расширились возможности визуальных наблюдений. Человеческий глаз воспринимает только световое излучение, а современные приборы позволяют «видеть» земную поверхность в невидимых лучах: ультрафиолетовых, инфракрасных, в радиодиапазоне. И каждый прибор «видит» то, что не различают другие.

Спутниковая информация представляет огромную ценность не только для науки. Она позволяет решить ряд задач во многих отраслях экономики. Например: в сельском хозяйстве. Так, спутниковая информация позволяет обнаружить районы, пораженные засухой, вредителями, техногенными выбросами. Интересный факт: В 70-е и 80-е гг. Советский Союз закупал в больших объемах зерно за рубежом – в США, Канаде и других странах. Нет сомнения, что зарубежные партнеры при определении цены учитывали виды на урожай и использовали спутниковую информацию для оценки состояния сельхозугодий в СССР.

Активно используется космический мониторинг в борьбе с лесными пожарами. По данным, полученным со спутников, можно определить координаты очагов пожаров, площадь и объем сгоревшего леса, величину экономического ущерба. Например: на фото, сделанном в районе Амурской области летом 2014 года, четко выделяются очаги пожаров с дымовыми шлейфами.

По космоснимкам можно осуществлять экологический контроль атмосферного воздуха, отслеживая загрязнение снежного покрова и дымовые выбросы промышленных предприятий. На рисунке представлена карта экологического состояния воздушного бассейна над Москвой. Как видно, наиболее загрязненными районами являются районы железнодорожных вокзалов и территория вокруг завода имени Лихачева.

Данные дистанционного зондирования Земли, благодаря периодичности спутниковой съемки, позволяют оперативно оценить обстановку в районах возникновения стихийных бедствий (наводнений, циклонов, засух, землетрясений, пожаров) и служат основой для своевременного прогноза природных катастроф.

Пример мы видим на слайде: представлены два снимка одно и того же участка побережье Индонезии в декабре 2004 года с интервалом в несколько часов. Хорошо видны последствия цунами, охватившего побережье Индийского океана.

На следующих фотографиях, сделанных с интервалом 10-15 лет, можно наблюдать возникновение проблемы, связанной с пересыханием озера Чад. Подобное явление переживает и Аральское море.

Данные космического мониторинга можно использовать для принятия мер по предупреждению возникновения чрезвычайных ситуаций. Так, регулярный космический мониторинг ледовой обстановки на реках Сибири в весенний период позволяет своевременно выявлять места возникновения ледовых заторов с целью их ликвидации (например, взрывным методом) и тем самым не допустить возникновения сильного наводнения, приводящего к большому социальному и материальному ущербу.

Одной из наиболее важных задач, которую можно решить с помощью данных дистанционного зондирования Земли, является контроль развития инфраструктуры территории для целей регионального планирования. Как правило, при решении задач регионального планирования используются топографические карты. Но, как показывает опыт, данные карты перестают отражать истинное положение дел уже через несколько лет после составления. Появляются новые дороги, населенные пункты и др., не намеченные на карте. Все это в значительной степени затрудняет процесс регионального планирования. В этой связи применение систем дистанционного зондирования Землиоткрывает большие возможности для организации эффективного регионального планирования, особенно в условиях бурного развития страны или отдельных ее территорий.

Рисунок иллюстрирует вышесказанное. Как видно, сопоставление топографической карты района Туапсе, составленной в 1994 г., с космическим снимком того же района 2009 г. наглядно показывает преимущества использования систем дистанционного зондирования Земли. По снимку можно провести уточнение береговой линии, выявить вновь появившиеся объекты, не отмеченные на топографической карте.

Мы убедились, что в настоящее время космические снимки необходимы не только географам, но и метеорологам, геологам, картографам. С помощью космических снимков изучают строение земной коры, ищут полезные ископаемые, обнаруживают лесные пожары, исследуют богатые рыбой районы в океане. Таким образом, космический метод изучения Земли популярен, актуален, представляет неограниченные возможности.

Активно использовать данные дистанционного зондирования Земли имеют возможность не все отрасли и предприятия страны. Некоторые субъекты Федерации ввели в практику применение космоснимков для решения региональных задач. На территории Ярославской области крупными организациями, которые ввели в практику использование космоснимков являются «Геомониторинг» для исследования подземных вод, компании «Кадастр» и «Недра». Мы обнаружили, что существует проект программы использования данных дистанционного зондирования Земли для планирования территории Ярославля, разработке его генерального плана. С помощью снимка, сделанного из космоса, можно оперативно определить наиболее загруженные дороги с тем, чтобы с большей эффективностью спланировать строительство новых транспортных магистралей. Данные дистанционного зондирования пригодятся в планировании городской застройки и пригородных территорий, в решении экологических вопросов, для планирования системы озеленения и санитарных зон предприятий. Будем надеяться, что современные достижения в области космического мониторинга будут основой эффективного управления нашего региона.

Уже сейчас у каждого из нас есть персональный доступ к результатам космического зондирования Земли для использования в образовательных целях. Еще несколько лет назад это было бы фантастикой. Но ведь запуск первого искусственного спутника Земли и первый полет человека в космос даже за несколько лет до их осуществления тоже казался необыкновенной фантастикой.

Знание обладает великолепной особенностью – постоянно напоминает, что оно лишь трамплин в будущее и слишком много нам еще не известно. Выход человека в космос позволил решить много новых задач и сделать новые открытия. Но процесс познания таков, что, решая одни задачи, мы сталкивается с новыми нерешенными проблемами, ведь сам процесс познания бесконечен.

Понравилось? Лайкни нас на Facebook