Касательная к окружности. Полные уроки — Гипермаркет знаний

Государственное бюджетное образовательное учреждение

Гимназия № 000

Проектная работа по геометрии.

Восемь способов построения касательной к окружности.

9 биолого-химический класс

Научный руководитель : ,

заместитель директора по учебной работе,

преподаватель математики.

Москва 2012

Вступление

Глава 1. ………………………………………………………………4

Вывод (заключение)

Вступление

Высшее проявление духа – это разум.

Высшее проявление разума – это геометрия.

Клетка геометрии – треугольник. Он так же

неисчерпаем, как и вселенная. Окружность – душа геометрии.

Познайте окружность, и вы не только познаете душу

геометрии, но и возвысите душу свою.

Клавдий Птолемей
Задача.

Построить касательную к окружности с центром О и радиусом R, проходящую через точку А, лежащую вне окружности

Глава 1.

Построения касательной к окружности, не требующие обоснования, опирающегося на теорию параллельных прямых.

https://pandia.ru/text/78/156/images/image003_18.gif" width="17" height="16 src=">АВО =90°. Для окружности (О; r) ОВ – радиус. ОВ АВ, следовательно, АВ – касательная по признаку касательной.

Аналогично, АС – касательная к окружности.

Построение № 1 основывается на факте, который гласит, что касательная окружности перпендикулярна радиусу, проведенному в точку касания.

Для прямой имеется лишь одна точка касания с окружностью.

Через данную на прямой точку можно провести лишь одну перпендикулярную прямую.

Построение №2.

https://pandia.ru/text/78/156/images/image003_18.gif" width="17" height="16"> АВО = 90°

5. ОВ – радиус, АВО = 90°, следовательно, АВ – касательная по признаку.

6. Аналогично в равнобедренном треугольнике AON АС – касательная (АСО = 90°, ОС – радиус)

7. Итак, АВ и АС – касательные

Построение № 3

https://pandia.ru/text/78/156/images/image003_18.gif" width="17" height="16">ОРМ =ОВА= 90° (как соответствующие углы в равных треугольниках), следовательно, АВ – касательная по признаку касательной.

4. Аналогично, АС – касательная

Построение №4

https://pandia.ru/text/78/156/images/image008_9.jpg" align="left" width="330" height="743 src=">

Построение № 6.

Построение:

2. Проведу через точку А произвольную прямую, пересекающую окружность(О, r) в точках М и N.

6. АВ и ВС – искомые касательные.

Доказательство :

1. Т. к. треугольники PQN и PQM вписаны в окружность и сторона PQ является диаметром окружности, то эти треугольники прямоугольные.

2. В треугольнике PQL отрезки PM и QN – высоты, пересекающиеся в точке К, поэтому KL – третья высота..gif" width="17" height="16 src=">.gif" width="17" height="16 src=">AQS =AMS = 180° - https://pandia.ru/text/78/156/images/image003_18.gif" width="17" height="16">PQN = β, то |AQ| = |AS|ctg β. Поэтому |PA| : |AQ| = ctg α: ctg β (2).

5. Сопоставляя (1) и (2) получу |PD| : |PA| = |DQ| : |AQ|, или

(|OD| + R)(|OA| - R)=(R -|OD|)(|OA| + R).

После раскрытия скобок и упрощений нахожу, что |OD|·|OA|=R².

5. Из соотношения |OD|·|OA|=R² следует, что |OD|:R=R: |OA|, то есть треугольники ODB и OBA подобны..gif" width="17" height="16">OBA=90°.Следовательно, прямая АВ – искомая касательная, что и требовалось доказать.

Построение № 6.

Построение:

1. Прострою окружность (A; |OA|).

2. Найду раствор циркуля, равный 2R, для чего выберу на окружности (О; R) точку S и отложу три дуги, содержащие по 60º: SP=PQ=QT=60°. Точки S и T диаметрально противоположны.

3. Строю окружность (О; ST), пересекающую w 1Что это за окружность? в точках М и N.

4. Теперь построю середину МО. Для этого строю окружности (O; OM) и (М; МО), а затем для точек М и О находим на них диаметрально противоположные точки U и V.

6. Наконец, построю окружность (К; КМ) и (L; LM), пересекающиеся в искомой точке В – середине МО.

Доказательство:

Треугольники КМВ и UMK равнобедренные и подобные. Поэтому из того, что КМ= 0,5МU, следует, что МВ=0,5МК=0,5R. Итак, точка В – искомая точка касания. Аналогично можно найти точку касания С.

Глава 3.

Построения касательной к окружности, основанные на свойствах секущих, биссектрис.

Построение № 7

https://pandia.ru/text/78/156/images/image011_7.jpg" align="left" width="440" height="514 src=">Построение № 8

Построение:

1. Построю окружность (А;АР), пресекающую прямую АР в точке D.

2. Построю окружность w на диаметре QD

3. Пересеку ее перпендикуляром к прямой АР в точке А и получу точки М и N.

Доказательство:

Очевидно, что АМ²=АN²=АD·AQ=AP·AQ. Тогда окружность (А;АМ) пересекает (О;R) в точках касания В и С. АВ и АС - искомые касательные.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Министерство образования и науки Российской Федерации

Муниципальное бюджетное общеобразовательное учреждение

города Новосибирска «Гимназия №4»

Секция: математика

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

по теме:

СВОЙСТВА ДВУХ КАСАЮЩИХСЯ ОКРУЖНОСТЕЙ

Учеников 10 класса:

Хазиахметова Радика Ильдаровича

Зубарева Евгения Владимировича

Руководитель:

Л.Л. Баринова

Учитель математики

Высшей квалификационной категории

§ 1.Введение………..………………………….…………………………………………………3

§ 1.1 Взаимное расположение двух окружностей………………………...…………...………3

§ 2 Свойства и их доказательства………………………………………..…………….....….…4

§ 2.1 Свойство 1………………...……………………………………..…………………...….…4

§ 2.2 Свойство 2……………………………………………………..…………………...………5

§ 2.3 Свойство 3……………………………………………………..…………………...………6

§ 2.4 Свойство 4……………………………………………………..…………………...………6

§ 2.5 Свойство 5…………………………………..……………………………………...………8

§ 2.6 Свойство 6………………………………………………..………………………...………9

§ 3 Задачи…………………………………………………..…………………...…...………..…11

Список литературы………………………………………………………………….………….13

§ 1.Введение

Многие задачи, включающие в себя две касающиеся окружности, можно решить более коротко и просто, зная некоторые свойства, которые будут представлены дальше.

Взаимное расположение двух окружностей

Для начала оговорим возможное взаимное расположение двух окружностей. Может быть 4 различных случая.

1.Окружности могут не пересекаться.

2.Пересекаться.


3. Касаться в одной точке снаружи.

4.Касаться в одной точке внутри.


§ 2. Свойства и их доказательства

Перейдем непосредственно к доказательству свойств.

§ 2.1 Свойство 1

Отрезки между точками пересечения касательных с окружностями равны между собой и равны двум средним геометрическим радиусов данных окружностей.

Доказательство 1. О 1 А 1 и О 2 В 1 – радиусы, проведённые в точки касания.

2. О 1 А 1 ┴ А 1 В 1 , О2В1 ┴ А 1 В 1 → О 1 А 1 ║ О 2 В 1 .(по пункту 1)



  1. ▲О 1 О 2 D – прямоугольный, т.к. О 2 D ┴ О 2 В 1
  2. О 1 О 2 = R + r, О 2 D = R – r

  1. По теореме Пифагора А 1 В 1 = 2√Rr

(O 1 D 2 =(R+r) 2 -(R-r) 2 =R 2 +2Rr+r2-R 2 +2Rr-r 2 =√4Rr=2√Rr)

А 2 В 2 = 2√Rr (доказывается аналогично)

1)Проведем радиусы в точки пересечения касательных с окружностями.

2)Эти радиусы будут перпендикулярны касательным и параллельны друг другу.

3)Опустим перпендикуляр из центра меньшей окружности к радиусу большей окружности.

4)Гипотенуза полученного прямоугольного треугольника равна сумме радиусов окружностей. Катет равен их разности.

5)По теореме Пифагора получаем искомое соотношение.

§ 2.2 Свойство 2

Точки пересечения прямой, пересекающей точку касания окружностей и не лежащей ни в одной из них, с касательными делят пополам отрезки внешних касательных, ограниченные точками касания, на части, каждая из которых равна среднему геометрическому радиусов данных окружностей.

Доказательство 1.МС = МА 1 (как отрезки касательных)

2.МС = МВ 1 (как отрезки касательных)

3.А 1 М = МВ 1 = √Rr , А 2 N = NB 2 = √Rr (по пункту 1 и 2)

Утверждения, используемые в доказательстве Отрезки касательных, проведенных из одной точки к некоторой окружности равны. Используем это свойство для обеих данных окружностей.

§ 2.3 Свойство 3

Длина отрезка внутренней касательной, заключенного между внешними касательными, равна длине отрезка внешней касательной между точками касания и равна двум средним геометрическим радиусов данных окружностей.

Доказательство Этот вывод следует из предыдущего свойства.

MN = MC + CN = 2MC = 2A 1 M = A 1 B 1 = 2√Rr

§ 2.4 Свойство 4

Треугольник, образованный центрами касающихся окружностей и серединой отрезка касательной между радиусами, проведенными в точки касания, прямоугольный. Отношение его катетов равно частному корней радиусов этих окружностей.

Доказательство 1.МО 1 – биссектриса угла А 1 МС, МО 2 – биссектриса угла В 1 МС, т.к. центр окружности, вписанной в угол лежит на биссектрисе этого угла.

2.По пункту 1 ÐО 1 МС + ÐСМО 2 = 0,5(ÐА1МС + ÐСМВ 1) = 0,5p = p/2

3.ÐО 1 МО 2 – прямой. МС – высота треугольника O 1 МО 2 , т.к. касательная МN перпендикулярна радиусам, проведённым в точки касания → треугольники О 1 МС и МО 2 С – подобны.

4.О 1 М / МО 2 = О 1 С / МС = r / √Rr = √r / R (по подобию)

Утверждения, используемые в доказательстве 1)Центр окружности, вписанной в угол, лежит на биссектрисе этого угла. Катеты треугольника являются биссектрисами углов.

2)Пользуясь тем, что образованные таким образом углы равны, получаем, что искомый рассматриваемый нами угол прямой. Делаем вывод о том, что данный треугольник действительно прямоугольный.

3)Доказываем подобие треугольников, на которые высота (так как касательная перпендикулярна радиусам, проведенным в точки касания) делит прямоугольный треугольник, и по подобию получаем искомое отношение.

§ 2.5 Свойство 5

Треугольник, образованный точкой касания окружностей друг с другом и точками пересечения окружностей с касательной, прямоугольный. Отношение его катетов равно частному корней радиусов этих окружностей.

Доказательство

  1. ▲А 1 МС и ▲СМВ 1 – равнобедренные → ÐМА 1 С = ÐМСА 1 = α, ÐМВ 1 С = ÐМСВ 1 = β.

  1. 2α + 2β + ÐА 1 МС + ÐСМВ 1 = 2p → 2α + 2β = 2p - (ÐА 1 МС + ÐСМВ 1) = 2p - p = p, α + β = p/2

  1. Но ÐА 1 СВ 1 = α + β → ÐА 1 СВ 1 – прямой → ÐВ 1 СО 2 = ÐСВ 1 О 2 = p/2 – β = α

  1. ▲А 1 МС и ▲СО 2 В 1 – подобны → А 1 С / СВ 1 = МС / О 2 В 1 = √Rr / R = √r / R

Утверждения, используемые в доказательстве 1)Расписываем сумму углов треугольников, пользуясь тем, что они равнобедренные. Равнобедренность треугольников доказывается при помощи свойства о равенстве отрезков касательных.

2)Расписав сумму углов таким образом, получаем, что в рассматриваемом треугольнике есть прямой угол, следовательно он прямоугольный. Первая часть утверждения доказана.

3)По подобию треугольников(при его обосновании пользуемся признаком подобия по двум углам) находим отношение катетов прямоугольного треугольника.

§ 2.6 Свойство 6

Четырехугольник, образованный точками пересечения окружностей с касательной, является трапецией, в которую можно вписать окружность.

Доказательство 1.▲А 1 РА 2 и ▲В 1 РВ 2 – равнобедренные т.к. А 1 Р = РА 2 и В 1 Р = РВ 2 как отрезки касательных → ▲А 1 РА 2 и ▲В 1 РВ 2 – подобные.

2.А 1 А 2 ║ В 1 В 2 , т.к. равны соответственные углы, образованные при пересечении секущей А 1 В 1.

  1. MN – средняя линия по свойству 2 → А 1 А 2 + В 1 В 2 = 2MN = 4√Rr

  1. А 1 В 1 + А 2 В 2 = 2√Rr + 2√Rr = 4√Rr = А 1 А 2 + В 1 В 2 → в трапеции А 2 А 1 В 1 В 2 сумма оснований равна сумме боковых сторон, а это является необходимым и достаточным условием существования вписанной окружности.

Утверждения, используемые в доказательстве 1)Вновь воспользуемся свойством отрезков касательных. С его помощью докажем равнобедренность треугольников, образованных точкой пересечения касательных и точками касания.

2)Из этого будет следовать подобие данных треугольников и параллельность их оснований. На этом основании делаем вывод о том, что этот четырехугольник является трапецией.

3)По доказанному нами ранее свойству(2) находим среднюю линию трапеции. Она равна двум средним геометрическим радиусов окружностей. В полученной трапеции сумма оснований равна сумме боковых сторон, а это является необходимым и достаточным условием для существования вписанной окружности.

§ 3.Задачи

Рассмотрим на практическом примере, как можно упростить решение задачи, используя изложенные выше свойства.

Задача 1

В треугольнике АВС сторона АС=15 см. В треугольник вписана окружность. Вторая окружность касается первой и сторон АВ и ВС. На стороне АВ выбрана точка F, а на стороне ВС - точка М так, что отрезок FM является общей касательной к окружностям. Найдите отношение площадей треугольника BFM и четырехугольника АFМС, если FM - 4 см, а точка М отстоит от центра одной окружности на расстояние в два раза большее, чем от центра другой.

Дано: FM-общая касательная AC=15см FM=4см O 2 M=2О 1 M

Найти S BFM /S AFMC

Решение:

1)FM=2√Rr,O 1 M/O 2 M=√r/R

2)2√Rr=4, √r/R=0,5 →r=1,R=4; PQ=FM=4

3)▲BO 1 P и ▲BO 2 Q подобны → BP/BQ=O 1 P/O 2 Q, BP/(BP+PQ)=r/R,BP/(BP+4)=0,25;BP=4/3

4)FM+BP=16/3, S FBM =r*Р FBM =1*(16/3)=16/3; AC+BQ=15+4/3+4=61/3

5)S ABC =R*Р ABC =4*(61/3)=244/3 → S BFM /S AFMC =(16/3):(244/3)=4/61

Задача 2

В равнобедренный треугольник АВС вписаны две касающиеся окружности с их общей точкой Д и проходящей через эту точку общей касательной FK. Найти расстояние между центрами этих окружностей, если основание треугольника АС = 9 см, а отрезок боковой стороны треугольника заключенный между точками касания окружностей равен 4 см.

Дано: ABC – равнобедренный треугольник; FK – общая касательная вписанных окружностей. АС = 9 см; NE = 4 см

Решение:

Пусть прямые AB и CD пересекаются в точке О. Тогда ОА = ОD, ОВ = ОС, поэтому CD = = AB = 2√Rr

Точки О 1 и О 2 лежат на биссектрисе угла AOD. Биссектриса равнобедренного треугольника AOD является его высотой, поэтому AD ┴ O 1 O 2 и BC ┴ O 1 O 2 , значит,

AD ║ BC и ABCD – равнобедренная трапеция.

Отрезок MN – ее средняя линия, поэтому AD + BC = 2MN = 2AB = AB + CD

Следовательно, в эту трапецию можно вписать окружность.

Пусть AP – высота трапеции, прямоугольные треугольники АРВ и О 1 FO 2 подобны, поэтому АР/О 1 F = АВ/О 1 О 2 .

Отсюда находим, что

Список литературы

  • Приложение к газете «Первое сентября» «Математика» №43, 2003 год
  • ЕГЭ 2010. Математика. Задача С4. Гордин Р.К.

При вычерчивании контуров предметов сравнительно часто приходится строить общие касательные к двум дугам окружностей. Общая касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон касательной.

Построение общей внешней касательной к двум окружностям радиусами R и r (рисунок 47). Из центра окружности большего радиуса – точкиO 1 описывают окружность радиусомR r (рисунок 47, а). Находят середину отрезкаO 2 O 1 точкуO 3 и из нее проводят вспомогательную окружность радиусомO 3 O 2 илиO 3 O 1. Обе проведенные окружности пересекаются в точкахA иВ . ТочкиO 1 иB соединяют прямой и в пересечении ее с окружностью радиусомR определяют точку касанияD (рисунок 47, б). Из точкиO 2 параллельно прямойO 1 D проводят линию до пересечения с окружностью радиусомr и получают вторую точку касанияC . ПрямаяCD является искомой касательной. Так же строится вторая общая внешняя касательная к этим окружностям (прямаяEF ).

Рисунок 47

Построение общей внутренней касательной к двум окружностями радиусов R и r (рисунок 48). Из центра любой окружности, например: точкиO 1 , описывают окружность радиусомR +r (рисунок 48, а). Разделив отрезокO 2 O 1 пополам, получают точкуO 3 . Из точкиO 3 как из центра описывают вторую вспомогательную окружность радиусомO 3 O 2 = O 3 О 1 и отмечают точки A и В пересечения вспомогательных окружностей. Соединив прямой точки A и O 1 (рисунок 48, б), в пересечении ее с окружностью радиуса R получают точку касания D . Через центр окружности радиуса r проводят прямую, параллельную прямой O 1 D , и в пересечении ее с заданной окружностью определяют вторую точку касания С . Прямая CD внутренняя касательная к заданным окружностям. Аналогично строится и вторая касательная EF .

Рисунок 48

3.3 Сопряжения с помощью дуги окружности

3.3.1 Сопряжение двух прямых дугой окружности

Все задачи на сопряжение дугой могут быть сведены к двум видам. Сопряжение осуществляется либо заданным радиусом сопрягающей дуги, либо через точку, заданную на одной из сопрягаемых линий. В том и другом случаях необходимо построить центр сопрягающей дуги.

Сопряжение двух пересекающихся прямых дугой заданным радиусом R c (рисунок 49, а). Так как сопрягающая дуга должна касаться заданных прямых, то центр ее должен быть удален от каждой прямой на величину равную радиусуR c . Сопряжение строят так. Проводят две прямые, параллельные заданным и удаленные от них на величину радиусаR c и в пересечении этих прямых отмечают точкуO центр сопрягающей дуги. Из точкиО опускают перпендикуляр на каждую из заданных прямых. Основания перпендикуляров – точкиA иB являются точками касания сопрягающей дуги. Такое построение сопряжения справедливо для двух пересекающихся прямых, составляющих любой угол. Для сопряжения сторон прямого угла можно воспользоваться также способом, указанным на рисунке 49, б.

Рисунок 49

Сопряжение двух пересекающихся прямых, на одной из которых задана точка касания А сопрягающей дуги (рисунок 50). Известно, что геометрическим местом центров дуг, сопрягающих две пересекающиеся прямые, является биссектриса угла, образованного этими прямыми. Поэтому, построив биссектрису угла, из точки касанияA восстанавливают перпендикуляр к прямой до пересечения его с биссектрисой и отмечают точку O центр сопрягающей дуги. Опустив из точки О перпендикуляр на другую прямую, получают вторую точку касания В и радиусом R c = OA = OB осуществляют сопряжение двух прямых, на одной из которых была задана точка касания.

Сопряжение двух параллельных прямых дугой, проходящей через заданную точку касания А (рисунок 51). Из точкиA восставляют перпендикуляр к заданным прямым и на пересечении его со второй прямой отмечают точкуB . ОтрезокAB делят пополам и получают точкуО – центр сопрягающей дуги радиусом.

Рисунок 50 Рисунок 51

Обычно в такой задаче дана окружность и точка. Требуется построить касательную к окружности, при этом касательная должна проходить через заданную точку.

Если местонахождение точки не оговаривается, то следует отдельно оговорить три возможных случая расположения точки.

  1. Если точка лежит внутри круга, ограниченного данной окружностью, то касательную через нее построить нельзя.
  2. Если точка лежит на окружности, то касательная строится путем построения перпендикулярной прямой к радиусу, проведенному к данной точке.
  3. Если точка лежит за пределами круга, ограниченного окружностью, то перед построением касательной ищется точка на окружности, через которую она должна пройти.

Для решения второго случая на прямой, на которой лежит радиус, строится отрезок, равный радиусу и лежащий по другую строну от точки на окружности. Таким образом точка на окружности получается серединой отрезка, равному удвоенному радиусу. Далее строятся две окружности, чьи радиусы равны удвоенному радиусу исходной окружности, с центрами в концах отрезка, равному удвоенному радиусу. Через любую точку пересечения этих окружностей и заданную по условию задачи точку проводится прямая. Она будет срединным перпендикуляром к радиусу исходной окружности, то есть перпендикулярна ей, а значит, являться касательной к окружности.

Решить третий случай, когда точка лежит за пределами круга, ограниченного окружностью, можно так. Следует построить отрезок, соединяющий центр данной окружности и данную точку. Далее найти его середину, построив срединный перпендикуляр (описано в предыдущем абзаце). После этого начертить окружность (или ее часть). Точка пересечения построенной окружности и заданной по условию задачи есть точка, через которую проходит касательная, проходящая также через заданную по условию задачи точку. Через две известные точки проводится прямая-касательная.

Чтобы доказать, что построенная прямая - это касательная, следует рассмотреть угол, образованный радиусом данной по условию задачи окружности и отрезком, соединяющим точку пересечения окружностей с точкой, данной по условию задачи. Этот угол опирается на полуокружность (диаметр построенной окружности), а значит он прямой. То есть радиус перпендикулярен построенной прямой. Следовательно, построенная прямая является касательной.

Понравилось? Лайкни нас на Facebook