Гамма-распределение. Распределения непрерывных случайных величин Логарифмически нормальное распределение

Равномерное распределение. Непрерывная величина Х распределена равномерно на интервале (a , b ), если все ее возможные значения находятся на этом интервале и плотность распределения вероятностей постоянна:

Для случайной величины Х , равномерно распределенной в интервале (a , b ) (рис. 4), вероятность попадания в любой интервал (x 1 , x 2 ), лежащий внутри интервала (a , b ), равна:

(30)


Рис. 4. График плотности равномерного распределения

Примерами равномерно распределенных величин являются ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда , то выбирая наугад табличное значение, мы считаем, что ошибка округления выбранного числа есть случайная величина, равномерно распределенная в интервале

Показательное распределение. Непрерывная случайная величина Х имеет показательное распределение

(31)

График плотности распределения вероятностей (31) представлен на рис. 5.


Рис. 5. График плотности показательного распределения

Время Т безотказной работы компьютерной системы есть случайная величина, имеющая показательное распределение с параметром λ , физический смысл которого – среднее число отказов в единицу времени, не считая простоев системы для ремонта.

Нормальное (гауссово) распределение. Случайная величина Х имеет нормальное (гауссово) распределение , если плотность распределения ее вероятностей определяется зависимостью:

(32)

где m = M (X ) , .

При нормальное распределение называется стандартным .

График плотности нормального распределения (32) представлен на рис. 6.


Рис. 6. График плотности нормального распределения

Нормальное распределение является наиболее часто встречающимся в различных случайных явлениях природы. Так, ошибки выполнения команд автоматизированным устройством, ошибки вывода космического корабля в заданную точку пространства, ошибки параметров компьютерных систем и т.д. в большинстве случаев имеют нормальное или близкое к нормальному распределение. Более того, случайные величины, образованные суммированием большого количества случайных слагаемых, распределены практически по нормальному закону.

Гамма-распределение. Случайная величина Х имеет гамма-распределение , если плотность распределения ее вероятностей выражается формулой:

(33)

где – гамма-функция Эйлера.

4. Случайные величины и их распределения

Гамма-распределения

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k -го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (17) определяется тремя параметрами a , b , c , где a >0, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Γ(а) является нормировочным, он введен, чтобы

Здесь Γ(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с λ = 1/ b ). При натуральном а и с =0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами λ и с , имеет гамма-распределение с параметром формы а = k , параметром масштаба b = 1/λ и параметром сдвига kc . При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2 a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

Математическое ожидание М(Х) = ab + c ,

Дисперсию D (X ) = σ 2 = ab 2 ,

Неотрицательная случайная величина имеет гамма-распределение , если ее плотность распределения выражается формулой

где и , – гамма-функция:

Таким образом, гамма-распределение является двухпараметрическим распределением, оно занимает важное место в математической статистике и теории надежности. Это распределение имеет ограничение с одной стороны .

Если параметр формы кривой распределения – целое число, то гамма-распределение описывает время, необходимое для появления событий (отказов), при условии, что они независимы и появляются с постоянной интенсивностью .

В большинстве случаев это распределение описывает наработку системы с резервированием отказов стареющих элементов, время восстановления системы с резервированием отказов стареющих элементов, время восстановления системы и т. д. При различных количественных значениях параметров гамма-распределение принимает самые разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством, если

Функция распределения . (9)

Заметим, что функция надежности выражается формулой:

Гамма-функция обладает свойствами: , , (11)

откуда следует, что если – целое неотрицательное число, то

Кроме того, нам в последующем потребуется еще одно свойство гамма-функции: ; . (13)

Пример. Восстановление радиоэлектронной аппаратуры подчиняется закону гамма-распределения с параметрами и . Определить вероятность восстановления аппаратуры за час.

Решение. Для определения вероятности восстановления воспользуемся формулой (9) .

Для целых положительных значений функции , а при .

Если перейти к новым переменным, значения которых будут выражены ; , то получим табличный интеграл:

В этом выражении решение интеграла в правой части можно определить по той же формуле:


а при будет

При и новые переменные будут равны и , а сам интеграл будет равен

Значение функции будет равно

Найдем числовые характеристики случайной величины , подчиненной гамма-распределению

В соответствии с равенством (13) получим . (14)

Второй начальный момент найдем по формуле

откуда . (15)

Заметим, что при интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия. При интенсивность отказов возрастает, что характеризует период изнашивания и старения элементов.

При гамма-распределение совпадает с экспоненциальным распределением, при гамма-распределение приближается к нормальному закону. Если принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга -го порядка :



Здесь достаточно лишь указать, что закону Эрланга -го порядка подчинена сумма независимых случайных величин , каждая из которых распределена по показательному закону с параметром . Закон Эрланга -го порядка тесно связан со стационарным пуассоновским (простейшим) потоком с интенсивностью .

Действительно, пусть имеется такой поток событий во времени (рис. 6).

Рис. 6. Графическое представление пуассоновского потока событий во времени

Рассмотрим интервал времени , состоящий из суммы интервалов между событиями в таком потоке. Можно доказать, что случайная величина будет подчинена закону Эрланга -го порядка.

Плотность распределения случайной величины , распределенной по закону Эрланга -го порядка, может быть выражена через табличную функцию распределения Пуассона:

Если значение кратно и , то гамма-распределение совпадает с распределением хи-квадрат .

Заметим, что функцию распределения случайной величины можно вычислить по следующей формуле:

где определяются выражениями (12) и (13).

Следовательно, имеют место равенства, которые нам в дальнейшем пригодятся:

Пример. Поток производимых на конвейере изделий является простейшим с параметром . Все производимые изделия контролируются, бракованные укладываются в специальный ящик, в котором помещается не более изделий, вероятность брака равна . Определить закон распределения времени заполнения ящика бракованными изделиями и величину , исходя из того, чтобы ящик с вероятностью не переполнялся в течение смены.

Решение. Интенсивность простейшего потока бракованных изделий будет . Очевидно, что время заполнения ящика бракованными изделиями распределено по закону Эрланга


с параметрами и :

следовательно (18) и (19): ; .

Число бракованных изделий за время будет распределено по закону Пуассона с параметром . Следовательно, искомое число нужно находить из условия . (20)

Например, при [изделие/ч]; ; [ч]

из уравнения при

Случайная величина, имеющая распределение Эрланга, обладает следующими числовыми характеристиками (табл. 6).

Таблица 6

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения , целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

Заметим, что случайная величина, имеющая нормированное распределение Эрланга -го порядка, обладает следующими числовыми характеристиками (табл. 7).

Таблица 7

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения , целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Коэффициент вариации
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

Рассмотрим плотность

параметры распределения. Распределение с такой плотностью называется гамма распределение . Приведем график плотности этого распределения при

Величина

рассматриваемая как функция переменной

называется гамма-функцией и имеет следующие, легко доказываемые свойства

Это распределение обозначается

Гамма распределение обобщает экспоненциальное распределение и превращается в него при

Гамма распределение с целым параметром

называется распределение Эрланга порядка и обозначается

Распределение

где n – целое, называется распределение хи-квадрат и обозначается

Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве

Борелевская сигма-алгебра на пространстве действительных векторов определяется аналогично борелевской сигма-алгебре на прямой с заменой прямоугольников

на параллелепипеды

Обозначим ее

Эта сигма-алгебра содержит все практически важные множества векторов. Множество, принадлежащее борелевской сигма-алгебре называется борелевское множество .

Определение случайного вектора

основное вероятностное пространство

пространство векторов с борелевской сигма-алгеброй

Вероятностная мера, определенная на борелевской сигма-алгебре по формуле

называется распределением случайного вектора.

случайный вектор и

называется функция распределения (иначе - совместная функция распределения) случайного вектора

Аналогично одномерному случаю определяются дискретные и непрерывные случайные вектора и их распределения.

Плотность распределения случайного вектора f(x) – это функция, удовлетворяющая условию

Мера Лебега в конечномерном пространстве

Мера Лебега в конечномерном пространстве это мера, приписывающая параллелепипеду его объем. В частности, мера Лебега прямоугольника это его площадь.

Мера Лебега на квадрате - Задача о встрече

Рассмотрим следующую задачу.

Два человека договорились встретиться в определенном месте в течение часа и ждать друг друга не более 10 минут. Найти вероятность, того они встретятся, если момент прихода каждого совершенно случаен.

Для решения задачи построим следующую вероятностную модель. Исходом опыта является вектор

где первая координата – момент прихода первого человека, вторая – момент прихода второго. Сигма-алгебра – все борелевские подмножества единичного (1 час=1 единица времени) квадрата. Предположение о совершенной случайности моментов прихода приводит к вероятностной мере, которая приписывает каждому множеству единичного квадрата его площадь. Эта мера называется мера Лебега на квадрате . Подсчитаем вероятность интересующего нас события. Два человека встретятся, если

Площадь этой наклонной полосы

Независимые случайные величины

Случайные величины

,

заданные на одном вероятностном пространстве, называются независимыми, если для любых борелевских множеств

Простейший вид гамма-распределения - это распределение с плотностью

где - параметр сдвига, - гамма-функция, т.е.

(2)

Каждое распределение можно "развернуть" в масштабно-сдвиговое семейство. Действительно, для случайной величины , имеющей функцию распределения, рассмотрим семейство случайных величин, где- параметр масштаба, а- параметр сдвига. Тогда функция распределенияесть.

Включая каждое распределение с плотностью вида (1) в масштабно-сдвиговое семейство, получаем принятую в параметризацию семейства гамма-распределений:

Здесь - параметр формы,- параметр масштаба,- параметр сдвига, гамма-функциязадается формулой (2).

В литературе имеются и иные параметризации. Так, вместо параметра часто используют параметр. Иногда рассматривают двухпараметрическое семейство, опуская параметр сдвига, но сохраняя параметр масштаба или его аналог - параметр. Для некоторых прикладных задач (например, при изучении надежности технических устройств) это оправдано, поскольку из содержательных соображений представляется естественным принять, что плотность распределения вероятностей положительна для положительных значений аргумента и только для них. С этим предположением связана многолетняя дискуссия в 80-х годах о "назначаемых показателях надежности", на которой не будем останавливаться.

Частные случаи гамма-распределения при определенных значениях параметров имеют специальные названия. При имеем экспоненциальное распределение. При натуральномигамма-распределение - это распределение Эрланга, используемое, в частности, в теории массового обслуживания. Если случайная величинаимеет гамма-распределение с параметром формытаким, что- целое число,и, тоимеет распределение хи-квадратсстепенями свободы.

Области применения гамма-распределения

Гамма-распределение имеет широкие приложения в различных областях технических наук (в частности, в надежности и теории испытаний), в метеорологии, медицине, экономике . В частности, гамма-распределению могут быть подчинены общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k-го отказа и т.д. . Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение оказалось наиболее адекватным для описания спроса в ряде экономико-математических моделей управления запасами .

Возможность применения гамма-распределения в ряде прикладных задач иногда может быть обоснована свойством вопроизводимости: сумма независимых экспоненциально распределенных случайных величин с одним и тем же параметромимеет гамма-распределение с параметрами формы, масштабаи сдвига. Поэтому гамма-распределение часто используют в тех прикладных областях, в которых применяют экспоненциальное распределение.

Различным вопросам статистической теории, связанным с гамма-распределением, посвящены сотни публикаций (см. сводки ). В данной статье, не претендующей на всеохватность, рассматриваются лишь некоторые математико-статистические задачи, связанные с разработкой государственного стандарта .

Понравилось? Лайкни нас на Facebook