Что такое репарация днк. Репарация: это что? Механизмы репарации ДНК

В клетках имеются разнообразные "ремонтные бригады", которые следят за сохранностью информации, хранящейся на ДНК. Такие клеточные системы, исправляющие повреждения ДНК, называют системами репарации.

У бактерии кишечной палочки сейчас известно более 50 генов, контролирующих процессы репарации. Эти гены кодируют ферменты, которые умеют, например, вырезать поврежденные участки одной цепи ДНК. ДНК-полимераза достраивает это место цепи до нормы, а ДНК-лигазы "зашивают" разрыв в месте встроенного участка. Имеются специальные ферменты, которые устраняют повреждения, создаваемые ультрафиолетом, и т.д.

Если мутации возникают в каком-то гене системы репарации, то это ведет к увеличению частоты мутаций. Таким образом, есть гены, мутации в которых увеличивают частоту мутаций в других генах организма.

Существуют и сложные клеточные механизмы, которые обеспечивают правильное расхождение хромосом в гаметы. Если эти механизмы дают сбой, в одну гамету попадает лишняя хромосома, а в другой возникает нехватка хромосомы. Такие геномные мутации обычно приводят к гибели эмбрионов, врожденным уродствам или к наследственным заболеваниям .

Ежедневно в молекулах ДНК каждой клетки человеческого тела около 100000 звеньев повреждаются за счет разнообразных эндогенных процессов и экзогенных генотоксичных воздействий. Повреждение ДНК может приводить к появлению мутаций, провоцировать гибель клетки или служить толчком к ее злокачественному перерождению. Для предотвращения таких последствий в клетке существует несколько взаимодополняющих ферментативных систем, которые поддерживают процессы, носящие общее название репарация ДНК . Главная цель всех этих систем - восстановление последовательности ДНК, существовавшей до ее повреждения, или, если это невозможно, сведение изменений к минимуму. Системы репарации ДНК обеспечивают точность воспроизведения и сохранения генетической информации . Репаративные механизмы, которые использует клетка для поддержания стабильности информации, заложенной в ДНК универсальны - функциональная, а иногда и структурная гомология элементов, образующих эти механизмы, прослеживается от бактерий до человека. Чем сложнее клетка, тем большее количество структурных и регуляторных генов и их продуктов участвуют в процессах репарации ДНК, хотя принципиальная схема конкретного процесса, как правило, остается неизменной. Репаративные механизмы образуют сложную сеть, сплетенную функциональными связями или заимствованиями структурных элементов, которая обеспечивает баланс между стабильностью информации в ДНК и ее эволюционной изменчивостью. Точность воспроизведения ДНК и передачи информации, в ней заложенной, обеспечивается двумя матричными процессами - репликацией и транскрипцией ДНК. Хотя ДНК-полимераза обладает корректирующей активностью, репликация не абсолютно точна, и, если возникают неспаренные основания, то системы коррекции оснований исправляют ошибку.

Если в ДНК появляются одно- и двунитевые разрывы, то в действие вступает гомологичная рекомбинация , которая за счет сестринских обменов точно восстанавливает целостность ДНК. Однако рекомбинация - это "тяжелая артиллерия", и предназначена она более всего для изменчивости . При поступлении в клетку ДНК, которая лишь частично гомологична ДНК клетки, вероятна ее интеграция в геном с помощью гомологичной рекомбинации. На страже точности этого процесса стоит система корекции неспаренных оснований с длинным ресентезируемым участком (ДКНО), которая прерывает рекомбинацию, если гомология взаимодействующих молекул ДНК излишне несовершенна. Более того, ДКНО ликвидирует большинство рекомбинационных застроек на уровне онДНК, если они нарушают комплементарность спаривания нуклеотидов. Тем самым ДКНО снижает частоту рекомбинационных обменов в ДНК. Так система ДКНО отстаивает стабильность генома и его видоспецифичность. Наследственные нарушения клеточных репаративных систем у человека приводят к тяжелым врожденным аномалиям и/или предрасположенности к развитию раковых заболеваний.

Системы репарации отличаются друг от друга используемыми субстратами, ферментами и механизмами устранения поврежденных звеньев. На текущий момент выделяют 6 главных систем репарации-систему реактивации и остальные системы репарации, которые действуют с деградацией и повторным синтезом поврежденной части ДНК.

В случае сильного повреждения ДНК - образования двуцепочечных разрывов, обширных однонитевых брешей, сшивок между цепочками - функционирует система рекомбинационной репарации , при которой поврежденная ДНК исправляется за счет рекомбинации с полноценной копией генетического материала, если та присутствует в клетке. Двуцепочечные разрывы также могут лигироваться в процессе воссоединения негомологичных концов, что, однако, ведет к потере части генетического материала.

Неканонические пары оснований и короткие гетеродуплексы в ДНК узнаются системой репарации гетеродуплексов , которая удаляет фрагмент ДНК длиной до нескольких сотен дезоксинуклеотидов, включающий неканонический элемент, и застраивает образовавшуюся брешь.

7608 0

Под регенерацией подразумевают восстановление тканью, органом утраченной или поврежденной специализированной структуры.

Физиологическая регенерация заключается в обновлении морфофункциональных свойств ткани или органа с помощью естественных механизмов, например, образовании новых и резорбции старых, изношенных остеонов в кости.

При репаративной регенерации происходит процесс формирования новых структур на месте повреждения или травмы. В качестве иллюстрации можно привести процесс перелома длинных трубчатых костей. Процессы репаративной регенерации клеток, заключающиеся в образовании тканей на месте гибели поврежденных элементов во многом регулируются механическими условиями. В частности, деформация регенерата, например растяжение, из-за нестабильности может стимулировать как образование костной мозоли, так и рассасывание кости в зоне контактирующих поверхностей. Если происходит рассасывание, то возрастает нестабильность в зоне перелома. Увеличивающаяся деформация регенерата, например с использованием компрессионно-дистракционных аппаратов для остеосинтеза, может привести к постепенной дифференцировке клеток стромы в сторону повышения их прочности и жесткости. Так, мягкая грануляционная ткань, способная выдержать существенную деформацию, замещается соединительной тканью, обладающей большей жесткостью, но меньшей прочностью к деформации. Этот процесс часто называют «непрямым» заживлением. Если щель перелома небольшая и костные отломки хорошо стабилизированы межфрагментарной компрессией, то деформация проявляется минимально. При этом часто возникает прямое образование костной ткани, а рассасывание кости и образование периостальной мозоли не всегда обязательно. Такой тип заживления переломов называют «прямым» (контактным).

После санации очага воспаления от микробных и чужеродных тел включаются механизмы, протекающие с участием лимфоцитов и макрофагов. Лимфоциты секретируют ИЛ-2 и ФНО, которые активируют моноциты крови, которые в тканях проходят через стадию примирования и трансформируются в активированные макрофаги. Эти клетки, в свою очередь, секретируют в окружающую ткань ростовые факторы типа ФРФ, тромбоцитарный фактор роста, ИЛ-6, которые оказывают влияние на остеобласты, фибробласты и эндотелиальные клетки. Фибробласты делятся и по мере созревания начинают секретировать компоненты экстрацеллюлярного матрикса (протеогликаны, гликозаминогликаны, фибронектин, адгезины и т.п.), включая коллаген. Макрофаги контролируют фибриллогенез путем продукции при необходимости ферментов - коллагеназы и эластазы. Следует отметить, что оптимум работы большинства изо-форм этих ферментов лежит в нейтральной среде, т.е. тогда, когда все кислые продукты в очаге воспаления уже удалены или нейтрализованы. Кроме того, макрофаги через секрецию простагландинов и ФРФ, ФРТ и других факторов могут стимулировать или супрессировать функцию фибробластов, оказывая тем самым влияние на объем новой ткани (Кетлицкий, 1995; Серов и др., 1995).

Параллельно активируются процессы ангиогенеза. При этом макрофаги как бы пробивают туннели в экстрацеллюлярном матриксе, в которые мигрируют клетки эндотелия. При этом возникают новые капилляры, которые растут, превращаются в более крупные сосуды, ветвятся и пронизывают новую ткань (Маянский, Урсов, 1997). Этот процесс в какой-то мере напоминает механизм аппозиционного роста костной ткани или образования костной мозоли при переломах, в котором прослеживается та же, по-видимому, общебиологическая последовательность событий.

В результате заживления раны образуется новая ткань, которая в той или иной мере замещает функцию поврежденных структур. К сожалению, не всякое воспаление заканчивается таким исходом. В ряде случаев оно происходит с образованием разнообразных дефектов, грубой рубцовой тканью, переходит в хроническую стадию, включает аутоиммунные механизмы и склерозирование (кальцификации) тканей.

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

Репарация - это свойство живой клетки бороться с различными повреждениями ДНК. В окружающем мире существует множество факторов, способных вызвать необратимые изменения в живом организме. Чтобы сохранить свою целостность, избежать патологических и несовместимых с жизнью мутаций, должна существовать система самостоятельного восстановления. Как нарушается целостность генетического материала клетки? Рассмотрим этот вопрос более подробно. Также выясним, какие существуют восстановительные механизмы организма и как они работают.

Нарушения в ДНК

Молекула дезоксирибонуклеиновой кислоты может быть разорвана как в ходе биосинтеза, так и под влиянием вредных веществ. К негативным факторам, в частности, относят температуру или физические силы различного происхождения. Если разрушение произошло, клетка запускает процесс репарации. Так начинается восстановление исходной структуры За репарацию отвечают особые ферментные комплексы, присутствующие внутри клеток. С невозможностью отдельных клеток осуществлять восстановление связаны некоторые заболевания. Наука, изучающая процессы репарации, - это биология. В рамках дисциплины проведено достаточно много опытов и экспериментов, благодаря которым становится более понятным процесс восстановления. Надо отметить, что механизмы репарации ДНК очень интересны, как и история открытия и изучения данного феномена. Какие факторы способствуют началу восстановления? Для того чтобы процесс запустился, необходимо, чтобы на ДНК воздействовал стимулятор репарации тканей. Что это такое, подробнее расскажем чуть ниже.

История открытия

Это удивительное явление начал изучать американский ученый Кельнер. Первым значимым открытием на пути исследования репарации стал такой феномен, как фотореактивация. Этим термином Кельнер назвал эффект снижения вреда от ультрафиолетового облучения при последующей обработке поврежденных клеток ярким излучения видимого спектра.

"Световое восстановление"

Впоследствии исследования Кельнера получили свое логическое продолжение в работах американских биологов Сетлоу, Руперта и некоторых других. Благодаря труду этой группы ученых было достоверно установлено, что фотореактивация является процессом, который запускается благодаря особому веществу - ферменту, катализирующему расщепление димеров тимина. Именно они, как выяснилось, образовывались в ходе экспериментов под воздействием ультрафиолета. При этом яркий видимый свет запускал действие фермента, который способствовал расщеплению димеров и восстановлению первоначального состояния поврежденных тканей. В данном случае речь идет о световой разновидности восстановления ДНК. Определим это более четко. Можно сказать, что световая репарация - это восстановление под воздействием света первоначальной структуры ДНК после повреждений. Однако данный процесс не является единственным, способствующим устранению повреждений.

"Темновое" восстановление

Спустя некоторое время после открытия световой была обнаружена темновая репарация. Это явление происходит без какого-либо воздействия световых лучей видимого спектра. Данная способность к восстановлению обнаружилась во время исследования чувствительности некоторых бактерий к ультрафиолетовым лучам и Темновая репарация ДНК - это способность клеток убирать любые патогенные изменения дезоксирибонуклеиновой кислоты. Но следует сказать, что это уже не фотохимический процесс, в отличие от светового восстановления.

Механизм "темнового" устранения повреждений

Наблюдения за бактериями показали, что спустя некоторое время после того, как одноклеточный организм получил порцию ультрафиолета, вследствие чего некоторые участки ДНК оказались поврежденными, клетка регулирует свои внутренние процессы определенным образом. В результате измененный кусочек ДНК просто отрезается от общей цепочки. Получившиеся же промежутки заново заполняются необходимым материалом из аминокислот. Иными словами, осуществляется ресинтез участков ДНК. Открытие учеными такого явления, как темновая репарация тканей, - это еще один шаг в изучении удивительных защитных способностей организма животного и человека.

Как устроена система репарации

Эксперименты, позволившие выявить механизмы восстановления и само существование этой способности, проводились с помощью одноклеточных организмов. Но процессы репарации присущи живым клеткам животных и человека. Некоторые люди страдают Это заболевание вызвано отсутствием способности клеток ресинтезировать поврежденную ДНК. Ксеродерма передается по наследству. Из чего же состоит репарационная система? Четыре фермента, на которых держится процесс репарации - это ДНК-хеликаза, -экзонуклеаза, -полимераза и -лигаза. Первый из этих соединений способен распознавать повреждения в цепи молекулы дезоксирибонуклеиновой кислоты. Он не только распознает, но и обрезает цепь в нужном месте, чтобы удалить измененный отрезок молекулы. Само устранение осуществляется с помощью ДНК-экзонуклеазы. Далее происходит синтез нового участка молекулы дезоксирибонуклеиновой кислоты из аминокислот с целью полностью заменить поврежденный отрезок. Ну и финальный аккорд этой сложнейшей биологической процедуры совершается с помощью фермента ДНК-лигазы. Он отвечает за прикрепление синтезированного участка к поврежденной молекуле. После того как все четыре фермента сделали свою работу, молекула ДНК полностью обновлена и все повреждения остаются в прошлом. Вот так слаженно работают механизмы внутри живой клетки.

Классификация

На данный момент ученые выделяют следующие разновидности систем репарации. Они активируются в зависимости от разных факторов. К ним относятся:

  1. Реактивация.
  2. Рекомбинационное восстановление.
  3. Репарация гетеродуплексов.
  4. Эксцизионная репарация.
  5. Воссоединение негомологичных концов молекул ДНК.

Все одноклеточные организмы обладают как минимум тремя ферментными системами. Каждая из них обладает способностью осуществлять процесс восстановления. К этим системам относят: прямую, эксцизионную и пострепликативную. Этими тремя видами восстановления ДНК обладают прокариоты. Что касается эукариот, то в их распоряжении находятся дополнительные механизмы, которые называются Miss-mathe и Sos-репарация. Биология подробно изучила все эти виды самовосстановления генетического материала клеток.

Структура дополнительных механизмов

Прямая репарация — это наименее сложный способ избавления от патологических изменений ДНК. Ее осуществляют особые ферменты. Благодаря им восстановление структуры молекулы ДНК происходит очень быстро. Как правило, процесс протекает в течение одной стадии. Одним из вышеописанных ферментов является O6-метилгуанин-ДНК-метилтрансфераза. Эксцизионная система репарации - это тип самовосстановления дезоксирибонуклеиновой кислоты, который подразумевает вырезание измененных аминокислот и последующую замену их заново синтезированными участками. Этот процесс уже осуществляется в несколько стадий. В ходе пострепликативного восстановления ДНК в структуре этой молекулы могут образовываться бреши величиной в одну цепочку. Затем они закрываются при участии белка RecA. Пострепликативная система репарации уникальна тем, что в ее процессе отсутствует этап распознавания патогенных изменений.


Кто отвечает за механизм восстановления

На сегодняшний день ученым известно, что такое простейшее существо, как кишечная палочка, обладает не менее чем полусотней генов, отвечающих непосредственно за репарацию. Каждый ген выполняет определенные функции. К ним относят: распознавание, удаление, синтез, прикрепление, идентификацию последствий воздействия ультрафиолета и так далее. К сожалению, любые гены, в том числе и те, что отвечают за процессы репарации в клетке, подвергаются мутационным изменениям. Если это происходит, то они запускают более частые мутации и во всех клетках организма.

Чем опасно повреждение ДНК

Каждый день ДНК клеток нашего организма подвергаются опасности повреждений и патологических изменений. Этому способствуют такие факторы окружающей среды, как пищевые добавки, химические вещества, перепады температур, магнитные поля, многочисленные стрессы, запускающие определенные процессы в организме, и многое другое. Если структура ДНК будет нарушена, это может вызвать тяжелую мутацию клетки, а может в будущем привести к раку. Именно поэтому у организма есть комплекс мер, призванных бороться с такими повреждениями. Даже если ферментам не удается вернуть ДНК в первозданный вид, система репарации работает на то, чтобы свести повреждения к минимуму.

Гомологичная рекомбинация

Разберемся, что это такое. Рекомбинация являет собой обмен генетическим материалом в процессе разрыва и соединения молекул дезоксирибонуклеиновой кислоты. В том случае, когда в ДНК возникают разрывы, начинается процесс гомологичной рекомбинации. В ходе него осуществляется обмен фрагментами двух молекул. Благодаря этому точно восстанавливается первоначальная структура дезоксирибонуклеиновой кислоты. В некоторых случаях может происходить проникновение ДНК. Благодаря процессу рекомбинации возможна интеграция этих двух разнородных элементов.

Механизм восстановления и здоровье организма

Репарация - это обязательное условие нормального функционирования организма. Подвергаясь ежедневно и ежечасно угрозам повреждений и мутаций ДНК, многоклеточная структура приспосабливается и выживает. Это происходит в том числе и за счет налаженной системы репарации. Отсутствие нормальной восстановительной способности вызывает болезни, мутации и другие отклонения. К ним относятся различные патологии развития, онкология и даже само старение. Наследственные болезни вследствие нарушений репарации могут приводить к тяжелым злокачественным опухолям и другим аномалиям организма. Сейчас определены некоторые заболевания, вызываемые именно сбоями систем репарации ДНК. Это такие, например, патологии, как ксеродерма, неполипозный рак толстой кишки, трихотиодистрофия и некоторые раковые опухоли.

История открытия

Однонитевое и двунитевое повреждения ДНК

Начало изучению репарации было положено работами А. Келнера (США), который в обнаружил явление фотореактивации (ФР) - уменьшение повреждения биологических объектов, вызываемого ультрафиолетовыми (УФ) лучами, при последующем воздействии ярким видимым светом (световая репарация ).

Эксцизионная репарация

Пострепликативная репарация была открыта в клетках E.Coli , не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Репарация ДНК" в других словарях:

    Восстановление дефектов в ДНК, возникших в результате мутации или рекомбинации. Осуществляется системой репаративных ферментов, одни из к рых устанавливают место повреждения, др. его «вырезают», третьи синтезируют поврежденные участки, четвертые… … Словарь микробиологии

    репарация днк - – исправление «ошибок» в первичной структуре ДНК в результате действия специальных репаративных ферментов … Краткий словарь биохимических терминов

    репарация ДНК - — Тематики биотехнологии EN DNA repair … Справочник технического переводчика

    репарация ДНК - DNR reparacija statusas T sritis augalininkystė apibrėžtis DNR struktūros atsikūrimas po pažeidimo. atitikmenys: angl. DNA repair rus. репарация ДНК … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    РЕПАРАЦИЯ ДНК - Восстановление первоначальной структуры в молекуле ДНК, т.е. правильной последовательности нуклеотидов … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    ДНК репарация - * ДНК репарацыя * DNA repair ферментативная коррекция ошибок в нуклеотидной последовательности молекулы ДНК. Механизмы ДНК р. защищают генетическую информацию организма от повреждений, вызываемых мутагенами окружающей среды (напр., ультрафиолет,… …

    ДНК-зависимая ДНК-полимераза ДНКполимераза - ДНК зависимая ДНК полимераза, ДНКполимераза * ДНК залежная ДНК полімераза, ДНК полімераза * DNA dependent DNA polymerase or DNA polymerase фермент, катализирующий полимеризацию (см.) дезоксирибонуклеозидных трифосфатов в полимерную… … Генетика. Энциклопедический словарь

    - (от позднелат. reparatio восстановление), свойственное всем клеткам живых организмов восстановление первоначальной (нативной) структуры ДНК в случае ее нарушения. Повреждение структуры ДНК может привести к блокированию репликации ДНК (летальный… … Химическая энциклопедия

    Репарация: Репарация ДНК способность клеток исправлять химические повреждения и разрывы в молекулах ДНК. Репарации форма материальной ответственности субъекта международного права за ущерб, причиненный в результате совершенного им международного… … Википедия

    Система обнаружения и репарации вставок, пропусков и ошибочных спариваний нуклеотидов, возникающих в процессе репликации и рекомбинации ДНК, а также в результате некоторых типов повреждений ДНК Сам факт ошибочного спаривания не позволяет… … Википедия

Книги

  • Метилирование ДНК у растений. Механизмы и биологическая роль , Б. Ф. Ванюшин. Настоящее чтение одного из пионеров и известных мировых лидеров в изучении метилирования ДНК у разных организмов обстоятельно излагает сегодняшнее состояние общебиологической проблемы,…

Несмотря на высокую точность работы ферментов, осуществляющих репликацию ДНК, а также на существование механизма корректорской правки, при синтезе новых цепей ДНК все же происходят ошибки, связанные с включением в их состав некомплементарных нуклеотидов. Кроме того, молекулы ДНК подвергаются в клетках воздействию разнообразных физических и химических факторов, нарушающих их структуру. К числу наиболее часто возникающих повреждений ДНК можно отнести следующие:

Разрыв (b-N)-гликозидных связей между пурином и дезоксирибозой (депуринизация), который чаще всего является следствием повышения температуры. За сутки в клетке человека совершается от 5000 до 10 000 актов депуринизации ;

Спонтанное дезаминирование остатков цитозина и аденина с образованием, соответственно, остатков урацила и гипоксантин (примерно 100 событий на геном в сутки);

Алкилирование азотистых оснований под действием химических веществ особого класса (алкилирующих агентов );

- интеркаляция (встраивание) некоторых соединений между соседними парами нуклеотидов;

Образование ковалентных сшивок между цепями ДНК под действием бифункциональных агентов;

Образование, возникающих при поглощении ультрафиолетового света (УФ) циклобутановых димеров (рис. 2.2) между соседними пиримидинами в цепи.

Большинство перечисленных повреждений нарушает процессы репликации и экспрессии генов, например, каждый тиминовый димер в ДНК E. coli задерживает репликацию на 10 с. Кроме того, эти повреждения являются источником мутаций, если их исправление не осуществится до начала репликации ДНК.

Чаще всего подобные нарушения происходят лишь в одной из нитей ДНК, при этом во второй нити напротив повреждения в большинстве случаев содержится «правильная» последовательность, которая может служить матрицей для исправления ошибок. Таким образом, двойная спираль ДНК, а также то, что в ней закодирована информация о структуре репарационных ферментов, делает возможным уникальный механизм исправления ошибок - репарацию, характерный только для одного класса молекул - ДНК.

Репарационных систем и механизмов, существующих у разных организмов, очень много, среди них есть такие, которые специфичны лишь для исправления повреждений одного рода, а есть и менее специфичные. Для удобcтва все известные к настоящему времени репарационные процессы можно разделить на две категории: 1) те, что не требуют участия репликации и представляют собой непосредственное исправление нарушений в ДНК; 2) более сложные процессы, в ходе которых происходит репарационная репликация. Лучше всего репарационные механизмы изучены по отношению к исправлению повреждений, вызванных УФ-облучением, - пиримидиновых димеров (рис. 2.2).


Поскольку в наиболее известных процессах репарации последствий УФ-облучения принимают участие зависимые от УФ-света ферменты, репарационные механизмы делят также на световую (способную осуществиться лишь на видимом свету) и темновую (не требующую участия видимого света) репарацию.

К репарационным механизмам прямого исправления повреждений можно отнести дезалкилирование остатков гуанина и мономеризацию циклобутановых димеров между соседними пиримидиновыми основаниями. Дезалкилирование метилгуаниновых остатков относится к темновой репарации и происходит при участии ферментов, присутствующих в клетках бактерий и питающих. О 6 -метилгуанин-ДНК-алкил-трансфераза катализирует перенос алкильных групп на сульфгидрильные группы цистеиновых остатков фермента (рис. 2.3).

Расщепление димеров между пиримидиновыми нуклеотидами происходит в процессе фотореактивации - восстановления структуры молекул ДНК, поврежденных УФ-излучением в результате последующего воздействия видимого света (световая репарация). Известна неферментативная коротковолновая фотореактивация, которая заключается в мономеризации димеров при действии ультрафиолетового излучения с длиной волны 240 нм, а также ферментативная фотореактивация. Последнюю обычно и подразумевают под собственно фотореактивацией. Этот процесс требует участия видимого света с длиной волны 300-600 нм и осуществляется под действием специфических фотореактивирующих ферментов (дезоксирибопиримидинфотолиазы). Субстратом фотолиазы служат димеры пиримидиновых оснований, с которыми она образует комплекс (с неповрежденной ДНК фермент не связывается). Используя энергию поглощенного света, фермент разрушает димер без разрыва цепей ДНК (рис. 2.4).

Явление фотореактивации широко распространено в природе и обнаружено даже у таких примитивных микроорганизмов, как микоплазмы. Фотореактивирующие ферменты найдены у некоторых высших растений и животных, а также у всех изученных бактерий, за исключением Deinococcus radiodurans, который, тем не менее, чрезвычайно устойчив к действию УФ-света: эти бактерии выдерживают дозы в 1000 раз более высокие, чем те, которые убивают E. coli. При полном отсутствии способности к фотореактивации D. radiodurans обладает мощной системой эксцизионной репарации.

Репарационные события, связанные с заменой искаженных участков, не требуют участия видимого света и в них, кроме других ферментов, важную роль играют нуклеазы двух типов: экзо- и эндонуклеазы. Экзонуклеазы осуществляют расщепление ДНК, начиная с концов цепей, а эндонуклеазы атакуют цепи во внутренних частях, формируя в ДНК однонитевые разрывы. Среди многообразия разных видов репарации, связанной с репаративным cинтезом ДНК, можно выделить два основных: эксцизионную и пострепликативную репарацию.

Эксцизионная репарация. Отличительной особенностью эксцизионной репарации является удаление поврежденного участка ДНК. Этот вид репарации не столь специфичен в отношении повреждений ДНК, как фотореактивация, и с его помощью могут исправляться не только пиримидиновые димеры, но и многие другие изменения структуры ДНК. Эксцизионная репарация (рис. 2.5, А) представляет собой многоэтапный процесс и включает следующие события:

1) узнавание повреждения в ДНК, которое осуществляется специфическими эндонуклеазами, выполняющими и следующую стадию;

2) надрезание одной цепи ДНК вблизи повреждения - инцизия (осуществляют эндонуклеазы);

3) удаление группы нуклеотидов вместе с повреждением - эксцизия (осуществляют экзонуклеазы);

4) ресинтез ДНК - заполнение образовавшейся бреши (ДНК-полимеразная активность);

5) восстановление непрерывности репарируемой цепи за счет образования ковалентных связей сахарофосфатного остова молекулы.

Лучше всего механизм эксцизионной репарации изучен на примере темнового удаления пиримидиновых димеров из ДНК E. coli, облученных ультрафиолетом. В клетках кишечной палочки за данный процесс отвечают гены uvrA-D (кодируют структуру ферментов, вырезающих участок цепи ДНК с димером), а также polА (определяет структуру ДНК-полимеразы I, осуществляющую репартивный синтез ДНК). Особенностью такого способа эксцизионной репарации является образование одноцепочечных надрезов по обе стороны тиминового димера.

Некоторые организмы используют для репарации повреждений, в том числе связанных с образованием тиминовых димеров, еще одну разновидность эксцизионной репарации, предусматривающую участие в процессе особого фермента - N-гликозилазы. В данном случае первым репаративным событием является расщепление гликозидной связи между поврежденным основанием (например, одним из тиминов в димере, N-алкилированным пурином и др.) и дезоксирибозой. Таким образом, имеет место локальная апуринизация , или апиримидинизация ; возникает так называемый АР-сайт, узнаваемый АР-специфической эндонуклеазой, которая расщепляет фосфоди эфирную связь рядом с АР-сайтом. Затем брешь заполняется с помощью обычного репаративного синтеза.

В бактериальных и эукариотических клетках обнаружен целый ряд различных N-гликозилаз. Например, урацил-ДНК-гликозилаза узнает неправильную пару dG/dU, возникшую в результате спонтанного дезаминирования остатка дезоксицитозина из пары dG/dC. Дезаминирование цитозина может привести при репликации к возникновению мутантной нуклеотидной пары dA/dT, поскольку с точки зрения образования водородных связей урацил ведет себя аналогично тимину. Другой, широко распространенный фермент подобного типа, представляет собой пиримидиновый димер-N-гликозилазу, которая создает апиримидиновый сайт при репарации повреждений, связанных с образованием пиримидиновых димеров.

Сайты, в которых произошла депуринизация или депиримидинизация, выщепляются ферментами АР (апуриновые и апиримидиновые)-эндонуклеазами. В клетках про- и эукариот имеется много разнообразных АР-эндонуклеаз. Некоторые из них надрезают цепь с 3’-стороны АР-сайта, а другие расщепляют диэфирную связь с 5’-стороны; в любом случае образуются 3’-гидроксильный и 5’-фосфорильный концы. Это позволяет экзонуклеазе удалить прилегающие остатки по обе стороны надреза вместе с повреждением.

Различные варианты эксцизионной репарации широко распространены у про- и эукариотических организмов, в том числе у млекопитающих. Нарушения процессов эксцизионной репарации могут приводить к драматическим последствиям. Так, у людей известно наследственное заболевание - пигментная ксеродерма , основными симптомами которого является повышенная чувствительность к солнечному свету, приводящая к развитию рака кожи. У этих больных обнаружены различные дефекты эксцизионной репарации.

Пострепликативная репарация . Этот тип репарации требует участия продуктов генов, задействованных также в рекомбинационных событиях (rec-гены), и не осуществляется в клетках rec-мутантов, поэтому его называют еще и рекомбинационной репарацией. Рекомбинционная пострепликативная репарация основана на процессах репликации и рекомбинации поврежденной ДНК, она наименее специфична из всех рассмотренных типов репарации, поскольку в ней отсутствует этап узнавания повреждения. Это довольно быcтрый способ восстановления нативной структуры ДНК в дочерних (вновь синтезированных) цепях: показано, что репарация происходит уже в первые минуты после облучения. Особенностью данного процесса является сохранение повреждения в исходных (материнских) цепочках (рис.2.5, Б).

Наряду с быстрой существует и медленная пострепликативная репарация, для которой требуется несколько часов. Ее производит система ферментов, которая отсутствует в необлученных клетках и которую индуцирует облуче- ние. Этот механизм получил название SOS-репарации. Его удивительным отличием является значительное увеличение частоты мутаций, несмотря на то что ДНК и так уже повреждена. Это может являться следствием использования в качестве матрицы цепи ДНК, содержащей повреждения.

Пострепликативная репарация существует не только у бактерий, но и в клетках эукариот, в том числе у млекопитающих.

Понравилось? Лайкни нас на Facebook