1 и 2 замечательные. Второй замечательный предел: примеры нахождения, задачи и подробные решения

Первый замечательный предел.

Вывод первого замечательного предела представляет интерес с точки зрения приложения теории пределов, и поэтому мы предлагаем Вам его практически целиком.

Рассмотрим поведение функции
при
. Для этого рассмотрим окружность радиуса 1; обозначим центральный угол МОВ черезх , при этом
.

Тогда явно площадь DМОА < площадь сектора МОА < площадьDСОА (см. рис. 1).

S D МОА =

S МОА =
=
S D C ОА =

Вернувшись к упомянутому неравенству и удвоив его, получим:

sin x < x < tg x .

После почленного деления наsinx :
или

Поскольку
, то переменнаязаключена между двумя величинами, имеющими один и тот же предел, т.е. , на основании теоремы о пределе промежуточной функции предыдущего пункта имеем:

-первый замечательный предел .

Пример. Вычислите пределы функций, используя первый замечательный предел:




Ответ. 1) 1, 2) 0, 3)

Задание: Вычислите предел функции, используя первый замечательный предел:

Ответ:-2.

Второй замечательный предел.

Для вывода второго замечательного предела введем определение числа е :

Определение. Предел переменной величины
при
называется числом
е :

- Второй замечательный предел

Число е – иррациональное число. Его значение с десятью верными знаками после запятой обычно округляют до одного верного знака после запятой:

e = 2,7182818284…»2,7.

Теорема. Функция
при
х , стремящемся к бесконечности, стремится к пределу е :

Пример. Вычислите пределы функций:


Решение.

    Согласно свойствам пределов, предел степени равен степени предела, т. е.:


Кроме того, аналогичным образом можно доказать, что


Ответ. 1)е 3 , 2) е 2 , 3)е 4 .

Задание. Вычислите предел функции, используя второй замечательный предел:

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ответ: е -5

Непрерывность функции Непрерывность функции в точке

Определение. Функция f ( x ), x Î ( a ; b ) x о Î ( a ; b ), если предел функции f ( x ) в точке х о существует и равен значению функции в этой точке:

.

Согласно данному определению, непрерывность функции f (x ) в точкех о означает выполнимость следующих условий:

    функция f (x ) должна быть определена в точкех о ;

    у функции f (x ) должен существовать предел в точкех о ;

    предел функции f (x ) в точкех о должен совпадать со значением функции в этой точке.

Пример.

Функция f (x ) = x 2 определена на всей числовой прямой и непрерывна в точкех = 1 посколькуf (1) = 1 и

Непрерывность функции на множестве

Определение. Функция f(x), называется непрерывной на интервале (a; b), если она непрерывна в каждой точке этого интервала.

Если функция непрерывна в некоторой точке, то эта точка называется точкой непрерывности данной функции. В тех случаях, когда предел функции в данной точке не существует или его значение не совпадает со значением функции в данной точке, то функция называется разрывной в этой точке, а сама точка – точкой разрыва функции f(x).

Свойства непрерывных функций.

1) Сумма конечного числа функций, непрерывных в точке а,

2) Произведение конечного числа функций, непрерывных в точке а, есть функция, непрерывная в этой точке.

3) Отношение конечного числа функций, непрерывных в точке а, есть функция, непрерывная в этой точке, если значение функции, стоящей в знаменателе, отлично от нуля в точкеа.

Пример.

    Функция f (x ) = x п , гдеn Î N , непрерывна на всей числовой прямой. Доказать этот факт можно, используя свойство 2 и непрерывность функцииf (x ) = x .

    Функция f (x ) = с x п (с – константа) непрерывна на всей числовой прямой, исходя из свойства 2 и примера 1.

Теорема 1. Многочлен есть функция, непрерывная на всей числовой прямой.

Теорема 2 . Любая дробно-рациональная функция непрерывна в каждой точке своей области определения .

Пример.


Определение Функция f ( x ) называется непрерывной в точке х = а , если в этой точке ее приращение
стремится к нулю, когда приращение аргумента
стремится к нулю, или иначе: функция
f (х) называется непрерывной в точке х = а , если в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т. е. если

Собраны формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью первого замечательного предела. Даны подробные решения примеров с использованием первого замечательного предела его следствий.

Содержание

См. также: Доказательство первого замечательного предела и его следствий

Применяемые формулы, свойства и теоремы

Здесь мы рассмотрим примеры решений задач на вычисление пределов, в которых используется первый замечательный предел и его следствия.

Ниже перечислены формулы, свойства и теоремы, которые наиболее часто применяются в подобного рода вычислениях.

  • Первый замечательный предел и его следствия:
    .
  • Тригонометрические формулы для синуса, косинуса , тангенса и котангенса :
    ;
    ;
    ;
    при , ;
    ;
    ;
    ;
    ;
    ;
    .

Примеры решений

Пример 1

Для этого.
1. Вычисляем предел .
Поскольку функция непрерывна для всех x , и в том числе в точке , то
.
2. Поскольку функция не определена (и, следовательно, не является непрерывной) при , то нам нужно убедиться, что существует такая проколотая окрестность точки , на которой . В нашем случае при . Поэтому это условие выполнено.
3. Вычисляем предел . В нашем случае он равен первому замечательному пределу:
.

Таким образом,
.
Аналогичным образом, находим предел функции в знаменателе:
;
при ;
.

И наконец, применяем арифметические свойства предела функции :
.

Применим .
При . Из таблицы эквивалентных функций находим:
при ; при .
Тогда .

Пример 2

Найдите предел:
.

Решение с помощью первого замечательного предела

При , , . Это неопределенность вида 0/0 .

Преобразуем функцию за знаком предела:
.

Сделаем замену переменной . Поскольку и при , то
.
Аналогичным образом имеем:
.
Поскольку функция косинус непрерывна на всей числовой оси, то
.
Применяем арифметические свойства пределов:

.

Решение с помощью эквивалентных функций

Применим теорему о замене функций эквивалентными в пределе частного .
При . Из таблицы эквивалентных функций находим:
при ; при .
Тогда .

Пример 3

Найти предел:
.

Подставим в числитель и знаменатель дроби:
;
.
Это неопределенность вида 0/0 .

Попробуем решить этот пример с помощью первого замечательного предела. Поскольку в нем значение переменной стремится к нулю, то сделаем подстановку, чтобы новая переменная стремилась не к , а к нулю. Для этого от x перейдем к новой переменной t , сделав подстановку , . Тогда при , .

Предварительно преобразуем функцию за знаком предела, умножив числитель и знаменатель дроби на :
.
Подставим и воспользуемся приведенными выше тригонометрическими формулами.
;


;

.

Функция непрерывна при . Находим ее предел:
.

Преобразуем вторую дробь и применим первый замечательный предел:
.
В числителе дроби мы сделали подстановку .

Применяем свойство предела произведения функций:

.

.

Пример 4

Найти предел:
.

При , , . У нас неопределенность вида 0/0 .

Преобразуем функцию под знаком предела. Применим формулу:
.
Подставим :
.
Преобразуем знаменатель:
.
Тогда
.

Поскольку и при , то сделаем подстановку , и применим теорему о пределе сложной функции и первый замечательный предел:
.

Применяем арифметические свойства предела функции:
.

Пример 5

Найдите предел функции:
.

Нетрудно убедиться, что в этом примере мы имеем неопределенность вида 0/0 . Для ее раскрытия, применим результат предыдущей задачи, согласно которому
.

Введем обозначение:
(П5.1) . Тогда
(П5.2) .
Из (П5.1) имеем:
.
Подставим в исходную функцию:

,
где ,
,
;
;
;
.

Используем (П5.2) и непрерывность функции косинус. Применяем арифметические свойства предела функции.
,
здесь m - отличное от нуля число, ;
;


;
.

Пример 6

Найти предел:
.

При , числитель и знаменатель дроби стремятся к 0 . Это неопределенность вида 0/0 . Для ее раскрытия, преобразуем числитель дроби:
.

Применим формулу:
.
Подставим :
;
,
где .

Применим формулу:
.
Подставим :
;
,
где .

Числитель дроби:

.
Функция за знаком предела примет вид:
.

Найдем предел последнего множителя, учитывая его непрерывность при :



.

Применим тригонометрическую формулу:
.
Подставим ,
. Тогда
.

Разделим числитель и знаменатель на , применим первый замечательный предел и одно из его следствий:

.

Окончательно имеем:
.

Примечание 1. Также можно было применить формулу
.
Тогда .

См. также:

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.

Обычно второй замечательный предел записывают в такой форме:

\begin{equation} \lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e\end{equation}

Число $e$, указанное в правой части равенства (1), является иррациональным. Приближённое значение этого числа таково: $e\approx{2{,}718281828459045}$. Если сделать замену $t=\frac{1}{x}$, то формулу (1) можно переписать в следующем виде:

\begin{equation} \lim_{t\to{0}}\biggl(1+t\biggr)^{\frac{1}{t}}=e\end{equation}

Как и для первого замечательного предела, неважно, какое выражение стоит вместо переменной $x$ в формуле (1) или вместо переменной $t$ в формуле (2). Главное - выполнение двух условий:

  1. Основание степени (т.е. выражение в скобках формул (1) и (2)) должно стремиться к единице;
  2. Показатель степени (т.е. $x$ в формуле (1) или $\frac{1}{t}$ в формуле (2)) должен стремиться к бесконечности.

Говорят, что второй замечательный предел раскрывает неопределенность $1^\infty$. Заметьте, что в формуле (1) мы не уточняем, о какой именно бесконечности ($+\infty$ или $-\infty$) идёт речь. В любом из этих случаев формула (1) верна. В формуле (2) переменная $t$ может стремиться к нулю как слева, так и справа.

Отмечу, что есть также несколько полезных следствий из второго замечательного предела . Примеры на использование второго замечательного предела, равно как и следствий из него, очень популярны у составителей стандартных типовых расчётов и контрольных работ.

Пример №1

Вычислить предел $\lim_{x\to\infty}\left(\frac{3x+1}{3x-5}\right)^{4x+7}$.

Сразу отметим, что основание степени (т.е. $\frac{3x+1}{3x-5}$) стремится к единице:

$$ \lim_{x\to\infty}\frac{3x+1}{3x-5}=\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{3+\frac{1}{x}}{3-\frac{5}{x}} =\frac{3+0}{3-0} =1. $$

При этом показатель степени (выражение $4x+7$) стремится к бесконечности, т.е. $\lim_{x\to\infty}(4x+7)=\infty$.

Основание степени стремится к единице, показатель степени - к бесконечности, т.е. мы имеем дело с неопределенностью $1^\infty$. Применим формулу для раскрытия этой неопределённости. В основании степени формулы расположено выражение $1+\frac{1}{x}$, а в рассматриваемом нами примере основание степени таково: $\frac{3x+1}{3x-5}$. Посему первым действием станет формальная подгонка выражения $\frac{3x+1}{3x-5}$ под вид $1+\frac{1}{x}$. Для начала прибавим и вычтем единицу:

$$ \lim_{x\to\infty}\left(\frac{3x+1}{3x-5}\right)^{4x+7} =|1^\infty| =\lim_{x\to\infty}\left(1+\frac{3x+1}{3x-5}-1\right)^{4x+7} $$

Следует учесть, что просто так добавить единицу нельзя. Если мы вынуждены добавить единицу, то её же нужно и вычесть, дабы не изменять значения всего выражения. Для продолжения решения учтём, что

$$ \frac{3x+1}{3x-5}-1 =\frac{3x+1}{3x-5}-\frac{3x-5}{3x-5} =\frac{3x+1-3x+5}{3x-5} =\frac{6}{3x-5}. $$

Так как $\frac{3x+1}{3x-5}-1=\frac{6}{3x-5}$, то:

$$ \lim_{x\to\infty}\left(1+ \frac{3x+1}{3x-5}-1\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{6}{3x-5}\right)^{4x+7} $$

Продолжим «подгонку». В выражении $1+\frac{1}{x}$ формулы в числителе дроби находится 1, а в нашем выражении $1+\frac{6}{3x-5}$ в числителе находится $6$. Чтобы получить $1$ в числителе, опустим $6$ в знаменатель с помощью следующего преобразования:

$$ 1+\frac{6}{3x-5} =1+\frac{1}{\frac{3x-5}{6}} $$

Таким образом,

$$ \lim_{x\to\infty}\left(1+\frac{6}{3x-5}\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{4x+7} $$

Итак, основание степени, т.е. $1+\frac{1}{\frac{3x-5}{6}}$, подогнано под вид $1+\frac{1}{x}$, который требуется в формуле . Теперь начнём работать с показателем степени. Заметьте, что в формуле выражения, стоящие в показатели степени и в знаменателе, одинаковы:

Значит, и в нашем примере показатель степени и знаменатель нужно привести к одинаковой форме. Чтобы получить в показателе степени выражение $\frac{3x-5}{6}$, просто домножим показатель степени на эту дробь. Естественно, что для компенсации такого домножения, придется тут же домножить на обратную дробь, т.е. на $\frac{6}{3x-5}$. Итак, имеем:

$$ \lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{4x+7} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{\frac{3x-5}{6}\cdot\frac{6}{3x-5}\cdot(4x+7)} =\lim_{x\to\infty}\left(\left(1+\frac{1}{\frac{3x-5}{6}}\right)^{\frac{3x-5}{6}}\right)^{\frac{6\cdot(4x+7)}{3x-5}} $$

Отдельно рассмотрим предел дроби $\frac{6\cdot(4x+7)}{3x-5}$, расположенной в степени:

$$ \lim_{x\to\infty}\frac{6\cdot(4x+7)}{3x-5} =\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{6\cdot\left(4+\frac{7}{x}\right)}{3-\frac{5}{x}} =6\cdot\frac{4}{3} =8. $$

Ответ : $\lim_{x\to{0}}\biggl(\cos{2x}\biggr)^{\frac{1}{\sin^2{3x}}}=e^{-\frac{2}{9}}$.

Пример №4

Найти предел $\lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right)$.

Так как при $x>0$ имеем $\ln(x+1)-\ln{x}=\ln\left(\frac{x+1}{x}\right)$, то:

$$ \lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right) =\lim_{x\to+\infty}\left(x\cdot\ln\left(\frac{x+1}{x}\right)\right) $$

Раскладывая дробь $\frac{x+1}{x}$ на сумму дробей $\frac{x+1}{x}=1+\frac{1}{x}$ получим:

$$ \lim_{x\to+\infty}\left(x\cdot\ln\left(\frac{x+1}{x}\right)\right) =\lim_{x\to+\infty}\left(x\cdot\ln\left(1+\frac{1}{x}\right)\right) =\lim_{x\to+\infty}\left(\ln\left(\frac{x+1}{x}\right)^x\right) =\ln{e} =1. $$

Ответ : $\lim_{x\to+\infty}x\left(\ln(x+1)-\ln{x}\right)=1$.

Пример №5

Найти предел $\lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}}$.

Так как $\lim_{x\to{2}}(3x-5)=6-5=1$ и $\lim_{x\to{2}}\frac{2x}{x^2-4}=\infty$, то мы имеем дело с неопределенностью вида $1^\infty$. Подробные пояснения даны в примере №2, здесь же ограничимся кратким решением. Сделав замену $t=x-2$, получим:

$$ \lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}} =\left|\begin{aligned}&t=x-2;\;x=t+2\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\biggl(1+3t\biggr)^{\frac{2t+4}{t^2+4t}}=\\ =\lim_{t\to{0}}\biggl(1+3t\biggr)^{\frac{1}{3t}\cdot 3t\cdot\frac{2t+4}{t^2+4t}} =\lim_{t\to{0}}\left(\biggl(1+3t\biggr)^{\frac{1}{3t}}\right)^{\frac{6\cdot(t+2)}{t+4}} =e^3. $$

Можно решить данный пример и по-иному, используя замену: $t=\frac{1}{x-2}$. Разумеется, ответ будет тем же:

$$ \lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}} =\left|\begin{aligned}&t=\frac{1}{x-2};\;x=\frac{2t+1}{t}\\&t\to\infty\end{aligned}\right| =\lim_{t\to\infty}\left(1+\frac{3}{t}\right)^{t\cdot\frac{4t+2}{4t+1}}=\\ =\lim_{t\to\infty}\left(1+\frac{1}{\frac{t}{3}}\right)^{\frac{t}{3}\cdot\frac{3}{t}\cdot\frac{t\cdot(4t+2)}{4t+1}} =\lim_{t\to\infty}\left(\left(1+\frac{1}{\frac{t}{3}}\right)^{\frac{t}{3}}\right)^{\frac{6\cdot(2t+1)}{4t+1}} =e^3. $$

Ответ : $\lim_{x\to{2}}\biggl(3x-5\biggr)^{\frac{2x}{x^2-4}}=e^3$.

Пример №6

Найти предел $\lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x} $.

Выясним, к чему стремится выражение $\frac{2x^2+3}{2x^2-4}$ при условии $x\to\infty$:

$$ \lim_{x\to\infty}\frac{2x^2+3}{2x^2-4} =\left|\frac{\infty}{\infty}\right| =\lim_{x\to\infty}\frac{2+\frac{3}{x^2}}{2-\frac{4}{x^2}} =\frac{2+0}{2-0}=1. $$

Таким образом, в заданном пределе мы имеем дело с неопределенностью вида $1^\infty$, которую раскроем с помощью второго замечательного предела:

$$ \lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x} =|1^\infty| =\lim_{x\to\infty}\left(1+\frac{2x^2+3}{2x^2-4}-1\right)^{3x}=\\ =\lim_{x\to\infty}\left(1+\frac{7}{2x^2-4}\right)^{3x} =\lim_{x\to\infty}\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{3x}=\\ =\lim_{x\to\infty}\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{\frac{2x^2-4}{7}\cdot\frac{7}{2x^2-4}\cdot 3x} =\lim_{x\to\infty}\left(\left(1+\frac{1}{\frac{2x^2-4}{7}}\right)^{\frac{2x^2-4}{7}}\right)^{\frac{21x}{2x^2-4}} =e^0 =1. $$

Ответ : $\lim_{x\to\infty}\left(\frac{2x^2+3}{2x^2-4}\right)^{3x}=1$.

Понравилось? Лайкни нас на Facebook